• Title/Summary/Keyword: F-T (Fischer-Tropsch)

Search Result 14, Processing Time 0.026 seconds

Influence of Binder on Fe-based Extrudate as Fischer-Tropsch Catalysts (Fischer-Tropsch 반응용 Fe계 압출성형촉매 제조에서의 바인더의 영향)

  • Seo, Jeong-Hwan;Chae, Ho-Jeong;Kim, Tae-Wan;Jeong, Kwang-Eun;Kim, Chul-Ung;Lee, Sang-Bong;Jeong, Soon-Yong
    • Korean Chemical Engineering Research
    • /
    • v.49 no.6
    • /
    • pp.726-731
    • /
    • 2011
  • The technology enabling the large-scale production of catalysts by extrusion is very important for the commercialization of the Fischer-Tropsch process. In this study, the influence of the binder on the extrudate of Fe-based catalyst well known as FT catalysts has been studied. Inorganic binders such as kaolin, bentonite, alumina sol and silica sol and organic binders were added during extrudate preparation. The extrudates have been prepared with various compositions, and the physicochemical properties of the extrudates have been examined by XRD, BET, PSD, TPR and UTM. The optimum binder composition of extrudate was established by comparing the FT reaction activity.

Kinetic Study of the Fischer-Tropsch Synthesis and Water Gas Shift Reactions over a Precipitated Iron Catalyst (철 촉매를 이용한 Fischer-Tropsch 합성 반응과 수성 가스 전환 반응에 대한 반응 속도 연구)

  • Yang, Jung-Il;Chun, Dong Hyun;Park, Ji Chan;Jung, Heon
    • Korean Chemical Engineering Research
    • /
    • v.50 no.2
    • /
    • pp.358-364
    • /
    • 2012
  • The kinetics of the Fischer-Tropsch synthesis and water gas shift reactions over a precipitated iron catalyst were studied in a 5 channel fixed-bed reactor. Experimental conditions were changed as follows: synthesis gas $H_2$/CO feed ratios of 0.5~2, reactants flow rate of 60~80 ml/min, and reaction temperature of $255{\sim}275^{\circ}C$ at a constant pressure of 1.5 MPa. The reaction rate of Fischer-Tropsch synthesis was calculated from Eley-Rideal mechanism in which the rate-determining step was the formation of the monomer species (methylene) by hydrogenation of associatively adsorbed CO. Whereas water gas shift reaction rate was determined by the formation of a formate intermediate species as the rate-determining step. As a result, the reaction rates of Fischer-Tropsch synthesis for the hydrocarbon formation and water gas shift for the $CO_2$ production were in good agreement with the experimental values, respectively. Therefore, the reaction rates ($r_{FT}$, $r_{WGS}$, $-r_{CO}$) derived from the reaction mechanisms showed good agreement both with experimental values and with some kinetic models from literature.

A Study on Fuel Quality Characteristics of F-T Diesel for Production of BTL Diesel (BTL 디젤 생산을 위한 F-T 디젤의 연료적 특성 연구)

  • Kim, Jae-Kon;Jeon, Cheol-Hwan;Yim, Eui-Soon;Jung, Choong-Sub;Lee, Sang-Bong;Lee, Yun-Je;Kang, Myung-Jin
    • Journal of the Korean Applied Science and Technology
    • /
    • v.29 no.3
    • /
    • pp.450-458
    • /
    • 2012
  • In order to reduce the effects of greenhouse gas (GHG) emissions, the South Korean government has announced a special platform of technologies as part of an effort to minimize global climate change. To further this effort, the Korean government has pledged to increase low-carbon and carbon neutral resources for biofuel derived from biomass to replace fossil and to decrease levels of carbon dioxide. In general, second generation biofuel produced form woody biomass is expected to be an effective avenue for reducing fossil fuel consumption and greenhouse gas (GHG) emissions in road transport. It is important that under the new Korean initiative, pilot scale studies evolve practices to produce biomass-to-liquid (BTL) fuel. This study reports the quality characteristics of F-T(Fischer-Tropsch) diesel for production of BTL fuel. Synthetic F-Tdiesel fuel can be used in automotive diesel engines, pure or blended with automotive diesel, due to its similar physical properties to diesel. F-T diesel fuel was synthesized by Fischer-Tropsch (F-T) process with syngas($H_2$/CO), Fe basedcatalyst in low temperature condition($240^{\circ}C$). Synthetic F-T diesel with diesel compositions after distillation process is consisted of $C_{12}{\sim}C_{23+}$ mixture as a kerosine, diesel compositions of n-paraffin and iso-paraffin compounds. Synthetic F-T diesel investigated a very high cetane number, low aromatic composition and sulfur free level compared to automotive diesel. Synthetic F-T diesel also show The wear scar of synthetic F-T diesel show poor lubricity due to low content of sulfur and aromatic compounds compared to automotive diesel.

Catalysts for Hydroisomerization of Synthesis-Oil for Bio-jet fuel Production (Bio-jet fuel 제조용 합성원유 수첨이성화 촉매)

  • Yun, So-Young;Lee, Eun-Ok;Park, Young-Kwon;Jeon, Jong-Ki;Jeong, Soon-Yong;Han, Jeong-Sik;Jeong, Byung-Hun
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2010.11a
    • /
    • pp.795-796
    • /
    • 2010
  • Interest has been increasing worldwide in Fischer-Tropsch synthesis (F-T) as a method of producing synthetic liquid fuels from biomass. Hydroisomerization of $C_7-C_{15}$ paraffins applies to production of diesel fuel with high cetane number and improved cold flow properties, such as viscosity, pour point and freezing point. The commercial products such as fuel jet produced from F-T synthesis should have low freezing and pour points. In this study, our major aim is to develop a catalyst for hydroisomerization of synthesis-oil for bio-jet fuel. Effects of zeolites and platinum loading on hydroisomerization of dodecane were investigated as a model reaction in a batch reactor.

  • PDF

A Comparative Study on the Injection Rate Characteristics of Conventional and F-T Synthetic Gasoline Under Various Fuel Temperatures (다양한 연료온도 조건에 있어서의 기존 가솔린과 F-T합성 가솔린의 분사율 특성 비교 연구)

  • Jihyun Son;Gyuhan Bae;Seoksu Moon
    • Journal of ILASS-Korea
    • /
    • v.28 no.3
    • /
    • pp.143-149
    • /
    • 2023
  • Amidst the drive towards carbon neutrality, interest in renewable synthetic e-fuels is rising rapidly. These fuels, generated through the synthesis of atmospheric carbon and green hydrogen, offer a sustainable solution, showing advantages like high energy density and compatibility with existing infrastructure. The physical properties of e-fuels can be different from those of conventional gasoline based on manufacturing methods, which requires investigations into how the physical properties of e-fuels affect the fuel injection characteristics. This study performs a comparative analysis between conventional and Fischer-Tropsch (F-T) synthetic gasoline (e-gasoline) across various fuel temperatures, including the cold start condition. The fuel properties of F-T synthetic and conventional gasoline are analyzed using a gas chromatography-mass spectrometry technique and the injection rates are measured using a Bosch-tube injection rate meter. The F-T synthetic gasoline exhibited higher density and kinematic viscosity, but lower vapor pressure compared to the conventional gasoline. Both fuels showed an increase in injection rate as the fuel temperature decreased. The F-T synthetic gasoline showed higher injection rates compared to conventional gasoline regardless of the fuel temperature.

Effect of Composition of γ-Al2O3/SiO2 Mixed Support on Fischer-Tropsch Synthesis with Iron Catalyst (철 기반 촉매의 Fischer-Tropsch 합성에서 γ-Al2O3/SiO2 혼합 지지체 조성의 영향)

  • Min, Seon Ki;No, Seong-Rae;You, Seong-sik
    • Korean Chemical Engineering Research
    • /
    • v.55 no.3
    • /
    • pp.436-442
    • /
    • 2017
  • Fischer-Tropsch synthesis is the technology of converting a syngas (CO+$H_2$) derived from such as coal, natural gas and biomass into a hydrocarbon using a catalyst. The catalyst used in the Fischer-Tropsch synthesis consists of active metal, promoter and support. The types of these components and composition affect the reaction activity and product selectivity. In this study, we manufactured an iron catalyst using ${\gamma}-Al_2O_3/SiO_2$ mixed support (100/0 wt%, 75/25 wt%, 50/50 wt%, 25/75 wt%, 0/100 wt%) by an impregnation method to investigate how the composition of ${\gamma}-Al_2O_3/SiO_2$ mixed support effects on the reaction activity and product selectivity. The physical properties of catalyst were analyzed by $N_2$ physical adsorption and X-Ray diffraction method. The Fischer-Tropsch synthesis was conducted at $300^{\circ}C$, 20bar in a fixed bed reactor for 60h. According to the results of the $N_2$ physical adsorption analysis, the BET surface area decreases as the composition of ${\gamma}-Al_2O_3$ decreases, and the pore volume and pore average diameter increase as the composition of ${\gamma}-Al_2O_3$ decreases except for the composition of ${\gamma}-Al_2O_3/SiO_2$ of 50/50 wt%. By the results of the X-Ray diffraction analysis, the particle size of ${\alpha}-Fe_2O_3$ decreases as the composition of ${\gamma}-Al_2O_3$ decreases. As a result of the Fischer-Tropsch synthesis, the CO conversion decreases as the composition of ${\gamma}-Al_2O_3$ decreases, and the selectivity of C1-C4 decreases until the composition of ${\gamma}-Al_2O_3$ was 25 wt%. In contrast, the selectivity of C5+ increases until the composition of ${\gamma}-Al_2O_3$ is 25 wt%.

Researches Trend to Produce Jet-fuel from Fischer-Tropsch Wax (Fischer-Tropsch 왁스로부터 항공유제조를 위한 촉매연구동향)

  • Park, Eun-Duck;Park, Myung-June;Kim, Yun-Ha;Kim, Myoung-Yeob;Jeong, Soon-Yong;Han, Jeong-Sik;Jeong, Byung-Hun
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2010.11a
    • /
    • pp.793-794
    • /
    • 2010
  • Fischer-Tropsch(F-T) reaction, in which syngas($H_2+CO$) is transformed into liquid fuels, has attracted much attention recently due to the limited reservoir of petroleum. The formed F-T wax can be converted into various liquid fuels, such as gasoline, diesel, jet fuel, lubricants, etc., through the hydrocracking reaction. To carry out the hydrocracking reaction, the bifunctional catalyst is required, in which hydrogenation/dehydrogenation occurs over metal and cracking proceeds over solid acid sites. In this contribution, we review the reported hydrocracking catalysts and summarize some process variables (feed compositions, reaction temperature and reaction pressure) for each catalyst.

  • PDF

Development Status of BTL (Biomass to Liquid) Technology (BTL(Biomass to Liquid) 기술 현황)

  • Chae, Ho-Jeong;Jeong, Kwang-Eun;Kim, Chul-Ung;Jeong, Soon-Yong
    • Journal of Energy Engineering
    • /
    • v.16 no.2
    • /
    • pp.83-92
    • /
    • 2007
  • In view of stringent environment regulations to control the emission of green house gases and also depleting fossil fuel reserves, it is high quality desirable to develop alternative technologies to produce high quality fuels. To this end Biomass to Liquid (BTL) technology has received much attention in recent years. BTL process generally consists of gasification of biomass to produce bio-syngas, cleaning and control of $H_{2}/CO$ mole ratio of bio-syngas and Fischer-Tropsch synthesis & upgrading systems. Choren, Germany has first developed the commercial BTL process using unique gasification system i.e., Carbo-V. A new technology to remove tars and BTX has been developed by ECN in Netherlands employing a gasification system combined with OLGA technology. Several other countries including USA and Japan are showing great interest in BTL technology. Thus in view of our national energy security and also the environmental regulations, it is essential to develop alternative technologies like BTL in order to meet the increasing demand of energy though our insufficient biomass resources. In this paper we present an overview and development status of BTL-diesel technology.

GTL(Gas-to-Liquid) 기술 현황

  • Jun, Gi-Won
    • Journal of Energy Engineering
    • /
    • v.16 no.2
    • /
    • pp.58-63
    • /
    • 2007
  • In recent years, the technologies for the production of synthetic fuel from natural gas have been attracting considerable interest because of high oil prices. While oil prices remaining high, GTL (Gas-to-Liquids) technology would provide an attractive option for utilizing gas resources. Furthermore, GTL fuels contain almost zero sulfur and low aromatics and have a very high cetane so that they are estimated to be environmentally friendly diesel fuels able of meeting the advanced fuel specifications of the 21st century. GTL process generally consists of three primary steps: synthesis gas production from natural gas reforming, hydrocarbon production from synthesis gas by Fischer-Tropsch (F-T) synthesis, product upgrading by hydrocracking/hydroisomerization. This paper presents a brief summary of GTL technology and worldwide development trend about it focusing on the reforming of natural gas and the F-T synthesis.

BTL Pilot Process using Fe-based F-T Catalyst (철계 촉매를 이용한 BTL 파일롯 공정 연구)

  • Chae, Ho-Jeong;Jeong, Soon-Yong;Kim, Chul-Ung;Jeong, Kwang-Eun;Koh, Jae-Cheon;Kim, Tae-Wan;Park, Hyun-Joo;Lee, Sang-Bong;Han, Jeong-Sik;Jeong, Byung-Hun
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2010.11a
    • /
    • pp.804-806
    • /
    • 2010
  • Due to the depletion of fossil fuel, high oil price and global warming issue by green house gas such as CO2, clean fuel technologies using biomass, especially BTL (biomass to liquid) technology, have been greatly attracted. This paper has examined F-T catalyst and process which are two backbones of BTL technology. In addition, this paper introduces our BTL pilot plant using Fe based catalyst which has been developed recently in Korea.

  • PDF