• 제목/요약/키워드: Eyes Detection

Search Result 239, Processing Time 0.02 seconds

Automatic Face and Eyes Detection: A Scale and Rotation Invariant Approach based on Log-Polar Mapping (Log-Polar 사상의 크기와 회전 불변 특성을 이용한 얼굴과 눈 검출)

  • Choi, Il;Chien, Sung-Il
    • Journal of the Korean Institute of Telematics and Electronics S
    • /
    • v.36S no.8
    • /
    • pp.88-100
    • /
    • 1999
  • Detecting human face and facial landmarks automatically in an image is as essential step to a fully automatic face recognition system. In this paper, we present a new approach to detect automatically face and its eyes of input image with scale and rotation variations of faces by using an intensity based template matching with a single log-polar face template. In a template-based matching it is necessary to normalize the scale changes and rotations of an input image to a template ones. The log-polar mapping which simulates space-variant human visual system converts scale changes and rotations of input image into constant horizontal and cyclic vertical shifts in the output plane. Intelligent use of this property allows us to shift of the candidate log-polar faces mapped at various fixation points of an input image to be matched to a template over the log-polar plane. Thus, the proposed method eliminates the need of adapting multitemplate and multiresolution schemes, which inevitably give rise to intensive computation involved to cope with scale and rotation variations of faces. Through this scale and rotation involved to cope with scale and method can lead to detecting face and its eyes simultaneously. Experimental results on a database of 795 images show over 98% detection rate.

  • PDF

Colorimetric Detection of Chelating Agents Using Polydiacetylene Vesicles (폴리다이아세틸렌 베시클을 이용한 킬레이트제의 색전이 검출)

  • Park, Moo-Kyung;Kim, Kyung-Woo;Ahn, Dong-June;Oh, Min-Kyu
    • Korean Chemical Engineering Research
    • /
    • v.49 no.3
    • /
    • pp.348-351
    • /
    • 2011
  • In this research, we developed a sensor system which can easily detect several chelating agents using polydiacetylene(PDA) vesicles. In comparison to other sensors, PDA based sensor has several advantages. First, detection method is much simpler and faster because it does not require any labeling step in the experiment procedure. Second, significant color-transition from blue to red based upon external stimulus allows us the detection by naked eyes. Finally, it is also possible to perform quantitative analysis of the concentration of the chelating agent by measuring the colorimetric response. In this paper, five types of chelating agents were used, including EDTA, EGTA, NTA, DCTA and DTPA. Among them, EDTA and DCTA triggered especially strong color-transition. In conclusion, this study has led to a successful development of a color transition-based PDA sensor system for easy and rapid detection of chelating agents.

Fast Face Detection in Video Using The HCr and Adaptive Thresholding Method (HCr과 적응적 임계화에 의한 고속 얼굴 검출)

  • 신승주;최석림
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.41 no.6
    • /
    • pp.61-71
    • /
    • 2004
  • Recently, various techniques for face detection are studied, but most of them still have problems on processing in real-time. Therefore, in this paper, we propose novel techniques for real-time detection of human faces in sequential images using motion and chroma information. First, background model is used to find a moving area. In this procmoving area. edure, intensity values for reference images are averaged, then skin-color are detected in We use HCr color-space model and adaptive threshold method for detection. Second, binary image labeling is applied to acquire candidate regions for faces. Candidates for mouth and eyes on a face are obtained using differences between green(G) and blue(B), intensity(I) and chroma-red(Cr) value. We also considered distances between eye points and mouth on a face. Experimental results show effectiveness of real-time detection for human faces in sequential images.

A Study on Facial Wrinkle Detection using Active Appearance Models (AAM을 이용한 얼굴 주름 검출에 관한 연구)

  • Lee, Sang-Bum;Kim, Tae-Mook
    • Journal of Digital Convergence
    • /
    • v.12 no.7
    • /
    • pp.239-245
    • /
    • 2014
  • In this paper, a weighted value wrinkle detection method is suggested based on the analysis on the entire facial features such as face contour, face size, eyes and ears. Firstly, the main facial elements are detected with AAM method entirely from the input screen images. Such elements are mainly composed of shape-based and appearance methods. These are used for learning the facial model and for matching the face from new screen images based on the learned models. Secondly, the face and background are separated in the screen image. Four points with the biggest possibilities for wrinkling are selected from the face and high wrinkle weighted values are assigned to them. Finally, the wrinkles are detected by applying Canny edge algorithm for the interested points of weighted value. The suggested algorithm adopts various screen images for experiment. The experiments display the excellent results of face and wrinkle detection in the most of the screen images.

A Study on Lip Detection based on Eye Localization for Visual Speech Recognition in Mobile Environment (모바일 환경에서의 시각 음성인식을 위한 눈 정위 기반 입술 탐지에 대한 연구)

  • Gyu, Song-Min;Pham, Thanh Trung;Kim, Jin-Young;Taek, Hwang-Sung
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.19 no.4
    • /
    • pp.478-484
    • /
    • 2009
  • Automatic speech recognition(ASR) is attractive technique in trend these day that seek convenient life. Although many approaches have been proposed for ASR but the performance is still not good in noisy environment. Now-a-days in the state of art in speech recognition, ASR uses not only the audio information but also the visual information. In this paper, We present a novel lip detection method for visual speech recognition in mobile environment. In order to apply visual information to speech recognition, we need to extract exact lip regions. Because eye-detection is more easy than lip-detection, we firstly detect positions of left and right eyes, then locate lip region roughly. After that we apply K-means clustering technique to devide that region into groups, than two lip corners and lip center are detected by choosing biggest one among clustered groups. Finally, we have shown the effectiveness of the proposed method through the experiments based on samsung AVSR database.

Face Region Detection Algorithm using Euclidean Distance of Color-Image (칼라 영상에서 유클리디안 거리를 이용한 얼굴영역 검출 알고리즘)

  • Jung, Haing-sup;Lee, Joo-shin
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.2 no.3
    • /
    • pp.79-86
    • /
    • 2009
  • This study proposed a method of detecting the facial area by calculating Euclidian distances among skin color elements and extracting the characteristics of the face. The proposed algorithm is composed of light calibration and face detection. The light calibration process performs calibration for the change of light. The face detection process extracts the area of skin color by calculating Euclidian distances to the input images using as characteristic vectors color and chroma in 20 skin color sample images. From the extracted facial area candidate, the eyes were detected in space C of color model CMY, and the mouth was detected in space Q of color model YIQ. From the extracted facial area candidate, the facial area was detected based on the knowledge of an ordinary face. When an experiment was conducted with 40 color images of face as input images, the method showed a face detection rate of 100%.

  • PDF

Rotated Face Detection Using Polar Coordinate Transform and AdaBoost (극좌표계 변환과 AdaBoost를 이용한 회전 얼굴 검출)

  • Jang, Kyung-Shik
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.25 no.7
    • /
    • pp.896-902
    • /
    • 2021
  • Rotated face detection is required in many applications but still remains as a challenging task, due to the large variations of face appearances. In this paper, a polar coordinate transform that is not affected by rotation is proposed. In addition, a method for effectively detecting rotated faces using the transformed image has been proposed. The proposed polar coordinate transform maintains spatial information between facial components such as eyes, mouth, etc., since the positions of facial components are always maintained regardless of rotation angle, thereby eliminating rotation effects. Polar coordinate transformed images are trained using AdaBoost, which is used for frontal face detection, and rotated faces are detected. We validate the detected faces using LBP that trained the non-face images. Experiments on 3600 face images obtained by rotating images in the BioID database show a rotating face detection rate of 96.17%. Furthermore, we accurately detected rotated faces in images with a background containing multiple rotated faces.

Design of RBFNNs Pattern Classifier Realized with the Aid of Face Features Detection (얼굴 특징 검출에 의한 RBFNNs 패턴분류기의 설계)

  • Park, Chan-Jun;Kim, Sun-Hwan;Oh, Sung-Kwun;Kim, Jin-Yul
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.26 no.2
    • /
    • pp.120-126
    • /
    • 2016
  • In this study, we propose a method for effectively detecting and recognizing the face in image using RBFNNs pattern classifier and HCbCr-based skin color feature. Skin color detection is computationally rapid and is robust to pattern variation for face detection, however, the objects with similar colors can be mistakenly detected as face. Thus, in order to enhance the accuracy of the skin detection, we take into consideration the combination of the H and CbCr components jointly obtained from both HSI and YCbCr color space. Then, the exact location of the face is found from the candidate region of skin color by detecting the eyes through the Haar-like feature. Finally, the face recognition is performed by using the proposed FCM-based RBFNNs pattern classifier. We show the results as well as computer simulation experiments carried out by using the image database of Cambridge ICPR.

A Method of Eye and Lip Region Detection using Faster R-CNN in Face Image (초고속 R-CNN을 이용한 얼굴영상에서 눈 및 입술영역 검출방법)

  • Lee, Jeong-Hwan
    • Journal of the Korea Convergence Society
    • /
    • v.9 no.8
    • /
    • pp.1-8
    • /
    • 2018
  • In the field of biometric security such as face and iris recognition, it is essential to extract facial features such as eyes and lips. In this paper, we have studied a method of detecting eye and lip region in face image using faster R-CNN. The faster R-CNN is an object detection method using deep running and is well known to have superior performance compared to the conventional feature-based method. In this paper, feature maps are extracted by applying convolution, linear rectification process, and max pooling process to facial images in order. The RPN(region proposal network) is learned using the feature map to detect the region proposal. Then, eye and lip detector are learned by using the region proposal and feature map. In order to examine the performance of the proposed method, we experimented with 800 face images of Korean men and women. We used 480 images for the learning phase and 320 images for the test one. Computer simulation showed that the average precision of eye and lip region detection for 50 epoch cases is 97.7% and 91.0%, respectively.

ID Face Detection Robust to Color Degradation and Partial Veiling (색열화 및 부분 은폐에 강인한 ID얼굴 검지)

  • Kim Dae Sung;Kim Nam Chul
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.41 no.1
    • /
    • pp.1-12
    • /
    • 2004
  • In this paper, we present an identificable face (n face) detection method robust to color degradation and partial veiling. This method is composed of three parts: segmentation of face candidate regions, extraction of face candidate windows, and decision of veiling. In the segmentation of face candidate regions, face candidate regions are detected by finding skin color regions and facial components such as eyes, a nose and a mouth, which may have degraded colors, from an input image. In the extraction of face candidate windows, face candidate windows which have high potentials of faces are extracted in face candidate regions. In the decision of veiling, using an eigenface method, a face candidate window whose similarity with eigenfaces is maximum is determined and whether facial components of the face candidate window are veiled or not is determined in the similar way. Experimental results show that the proposed method yields better the detection rate by about $11.4\%$ in test DB containing color-degraded faces and veiled ones than a conventional method without considering color degradation and partial veiling.