본 논문에서는 칼라 영상에서 적목(red eye)의 자동 검출 및 제거 방법을 제안한다. 제안한 방법은 적색도(redness)와 기하학적 특징에 기반하여 초기 적목 영역을 검출하고, 초기 적목 영역 주위의 국소적 특성을 반영하여 최종 적목 영역을 검출한다. 최종 적목 영역에 대해 소프트 제거에 기반한 방법을 사용하여 적목을 제거한다. 실험에서 제안한 방법은 Willamowski와 Csurka[1]의 방법에 비해 적목 영역의 검출과 제거 결과가 개선되었다.
In this paper, we present a fast face detection algorithm by estimating the eye region using neural network. To implement a real time face detection system, it is necessary to reduce search space. We limit the search space just to a few pairs of eye candidates. For the selection of them, we first isolate possible eye regions in the fast and robust way by modified histogram equalization. The eye candidates are paired to form an eye pair and each of the eye pair is estimated how close it is to a true eye pair in two aspects : One is how similar the two eye candidates are in shape and the other is how close each of them is to a true eye image A multi-layer perceptron neural network is used to find the eye candidate region's closeness to the true eye image. Just a few best candidates are then verified by eigenfaces. The experimental results show that this approach is fast and reliable. We achieved 94% detection rate with average 0.1 sec Processing time in Pentium III PC in the experiment on 424 gray scale images from MIT, Yale, and Yonsei databases.
In this paper, a real-time eye tracking method using fast face detection is proposed. Most of the current eye tracking systems have operational limitations due to sensors, complicated backgrounds, and uneven lighting condition. It also suffers from slow response time which is not proper for a real-time application. The tracking performance is low under complicated background and uneven lighting condition. The proposed algorithm detects face region from acquired image using elliptic Hough transform followed by eye detection within the detected face region using Haar-like features. In order to reduce the computation time in tracking eyes, the algorithm predicts next frame search region from the information obtained in the current frame. Experiments through simulation show good performance of the proposed method under various environments.
본 연구에서는 입력 얼굴 영상에서 눈의 윤곽선과 눈동자 영역을 추출하여 시선을 추정하는 시스템을 설계 및 구현한다. 눈 윤곽선과 눈동자 영역을 효율적으로 추출하기 위하여 먼저 입력 영상으로부터 얼굴 영역을 추출한다. 얼굴 영역 추출을 위하여 아시아인 얼굴 영상 셋을 확보하여 아시아인 피부색에 대한 YCbCr 범위를 사전에 정의하였고, 정의된 피부색 범위값에 따라 피부영역을 검출한다. 최대크기 피부 영역을 얼굴후보 영역으로 지정하고 검출된 얼굴 후보영역에 대한 상위 50%의 관심 영역 내에서 눈윤곽선과 색상 특성 분석을 이용한 눈 영역 검출 알고리즘을 수행하여 기존의 Haar-like feature 특성기반 눈 영역 검출방법에 비해 타이트한 눈 영역을 검출한다. 눈의 윤곽선을 포함하는 관심영역 전체를 기준으로 눈 영역을 3등분하고, 추출된 눈동자의 위치가 3등분된 영역에서 어느 영역에 중점적으로 위치하고 있는지를 분석하여 좌, 우, 정면 시선 방향을 추정한다. 본 연구에서는 20명의 실험자에 대한 5,616 장의 테스트 영상을 이용한 시선방향 추정 실험에서 약 91%의 정확도를 획득한다.
In this paper, we propose a pupil detection method using PCA(principal component analysis) and Hough transform. To reduce error to detect eyebrows as pupil, eyebrows are detected using projection function in eye region and eye region is set to not include the eyebrows. In the eye region, pupil candidates are detected using rank order filter. False candidates are removed by using symmetry. The pupil candidates are grouped into pairs based on geometric constraints. A similarity measure is obtained for two eye of each pair using PCA and hough transform, we select a pair with the smallest similarity measure as final two pupils. The experiments have been performed for 1000 images of the BioID face database. The results show that it achieves the higher detection rate than existing method.
사람의 눈동자는 얼굴 크기와 비교해 볼 때 상대적으로 일정한 거리를 가지고 있기 때문에 이미지 정규화에 있어서 중요한 지표로 사용된다. 이 논문은 이러한 특징을 이용해 최적화된 세그멘테이션 방법을 사용하여 눈동자 검출의 새로운 접근방법을 소개한다. 눈 검출 방법은 세 가지 중요한 단계로 나눌 수 있다. (1)흑백 영상에서 눈 영역에 적합한 에지 추출 방법, (2)레이블링(labeling) 기법을 이용한 눈 영역 추출, (3)밝기값 정보를 이용한 눈동자 위치 검출. 실험 결과로는 다양한 조명 환경과 얼굴표정을 가진 2408장의 FERET 영상을 이용하여 98.9%의 검출 성능을 보였다.
본 논문은 눈 깜박임 패턴을 이용한 새로운 졸음 검출 알고리즘을 제안하였다. 유한오토마타를 이용한 졸음 검출 모델을 제안하여 눈감은 상태를 나타내는 입력 심벌의 개수만을 체크함으로써 눈 깜박임, 졸음, 수면 검출을 용이하게 하였다. 또한 수평 투영 히스토그램의 특성을 이용하여 눈동자가 있는 영역만을 구해 수직 투영 히스토그램을 취함으로써 눈썹이나 안경테와 같은 외부 영향을 최소화 시켜 정확도를 높였다. ZJU 눈 깜박임 데이터베이스를 이용한 눈 깜박임 검출 실험 결과 93% 이상의 정확도를 얻음으로써 제안된 방법의 우수함을 보였다.
얼굴인식, 홍채인식과 같은 생체보안 분야에서 눈, 코, 입술 등 얼굴특징을 추출하는 과정은 필수적이다. 본 논문은 초고속(faster) R-CNN을 이용하여 얼굴영상에서 눈 및 입술영역을 검출하는 방법을 연구하였다. 초고속 R-CNN은 딥러닝을 이용한 물체검출 방법으로 기존의 특징기반 방법에 비해 성능이 우수한 것으로 알려져 있다. 본 논문에서는 얼굴영상에 콘볼루션, 선형정류과정, max pooling과정을 차례로 적용하여 특징맵을 추출하고 이로부터 제안영역(region proposal)을 검출하는 RPN(region proposal network)을 학습한다. 그리고 제안영역과 특징맵을 이용하여 눈 및 입술 검출기(detector)를 학습한다. 제안방법의 성능을 검토하기 위해 남녀한국인 얼굴영상 800장으로 실험하였다. 학습을 위해 480장을 이용했으며 테스트용으로 320장을 사용하였다. 컴퓨터모의 실험결과 눈 및 입술영역 검출의 평균정확도는 50 에포치일 때 각각 97.7%, 91.0%를 얻을 수 있었다.
개인용 컴퓨터에 연결하여 널리 사용되는 가시광선 카메라에 의해서 획득된 실시간 영상 데이터를 가지고 동공의 움직임을 검출하는 시스템을 제안하였다. 시스템은 3단계로 구성되는데, 첫 단계로 haar-like 기반의 특징 기법을 이용해서 얼굴 영역이 검출되고, 다음으로 얼굴 영역 내에서 템플릿 기반 기법을 이용하여 눈 영역이 검출된다. 끝으로 눈 영역 내에서 동공 부위가 검출되는데 눈 영상의 수평 및 수직 히스토그램 프로파일에 가우시안 필터를 컨벌루션 한 기법을 제안하였다. 실험 결과 2375개의 영장에 대해서 90% 이상의 검출율을 얻었으며 데이터 처리시간은 약 160㎳로 초당 7회씩 검출할 수 있었다.
In this paper, we describe new method to detect face in real-time. We use color information, edge information, and binary information to detect candidate regions of eyes from input image, and then extract face region using the detected eye pall. We verify both eye candidate regions and face region using Support Vector Machines(SVM). It is possible to perform fast and reliable face detection because we can protect false detection through these verification processes. From the experimental results, we confirmed the proposed algorithm shows very excellent face detection performance.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.