• Title/Summary/Keyword: Extrusion pressure

Search Result 210, Processing Time 0.024 seconds

A study on the Fabrication of Copper-clad Aluminum Composite using Hydrostatic Extrusion (정수압 압출을 이용한 Copper-clad Aluminum 복합계 제조에 대한 연구)

  • 한운용;이경엽;박훈재;윤덕계;김승수
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.21 no.7
    • /
    • pp.179-184
    • /
    • 2004
  • In this work, a copper-clad aluminum composite was fabricated using hot hydrostatic extrusion with various extrusion ratios (8.5, 19, 49) and semi-die angles (30, 45, 60 degree) at a temperature of 32$0^{\circ}C$, Material characteristics of copper-clad aluminum composites were determined from compression tests and hardness tests The results showed that for ER of 8.5, the optimum semi-die angle was below or equal to 30 degree and a pressure drop was about 31%. For ER of 19, the optimum semi-die angle was in the range of 40 to 50 degree and a pressure drop was about 38%. In the case of ER=49, the optimum semi-die angle was above or equal to 60 degree and a pressure drop was about 36%. Compressive yield strength was maximum for ER of 8.5 and semi-die angle of 30 degree and the value of maximum was 155 MPa. Uniform hardness distribution was obtained as the extrusion ratio increases and the semi-die angle decreases. In the case of ER=8.5 and semi-die angle of 30 degree, the lowest extrusion pressure and the maximum compressive yield strength was obtained. Therefor, it was concluded that the optimum extrusion condition for fabricated copper-clad aluminum composites under hydrostatic pressure environment was ER of 19 and semi-die angle of 30 degree.

Development of Thixoextrusion Process for Light Alloys - Part 2. Thixoextrusion Process for Light Alloys (경량합금 반용융 압출 기술 개발 - Park 2. 반용융 압출 공정 기술)

  • Kim, Shae-K.;Yoon, Young-Ok;Jang, Dong-In;Jo, Hyung-Ho
    • Journal of Korea Foundry Society
    • /
    • v.26 no.5
    • /
    • pp.217-221
    • /
    • 2006
  • The main emphasis of this study was to utilize thixoextrusion process for improving extrudability of 7075, 7003 Al wrought alloys and AZ31 Mg wrought alloy. The results of thixbextrusion experiments about microstructures and extrusion pressures were compared with conventional hot extrusion results. The maximum extrusion pressure of thixoextrusion was greatly decreased compared with that of conventional hot extrusion. It was pointed out that the extrusion temperature dependence of the maximum extrusion pressure was large and the influence of extrusion temperature on the improvement of extrudability was remarkable in thixoextrusion. This will contribute to extrudability in terms of extrusion pressure, which in turn means that shorter process time is required and smaller extrusion machine can be applied for the same operation. The elongated grains to extrusion direction were generally observed during conventional hot extrusion, while the thixoextruded microstructures were isotropic.

A Study on the Con-focal Microscope for the Surface Measurements (공초점 현미경을 이용한 물체표면 형상측정에 관한 연구)

  • 강영준;송대호;유원재;백성훈
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.20 no.5
    • /
    • pp.73-81
    • /
    • 2003
  • In case of hollow cylinder extrusion using porthole die, the effects of extrusion parameters-temperature, the speed of extrusion, the shape of the die and mandrel-on metal flow in porthole die extrusion of aluminum have been investigated. However, there have been few studies about condenser tube extruded by porthole die. Original metal flow of condenser tube by porthole die extrusion is similar to hollow cylinder extrusion but the estimation of metal flow for extrusion parameters is different. For example, variation of chamber length in hollow extrusion only affects the welding pressure, however, the welding chamber length in condenser tube extrusion influences to the welding pressure as well as the deflection of mandrel. This study was designed to evaluate metal flow, welding pressure, extrusion load, tendency of mandrel deflection according to angular variation in the bottom of chamber in porthole die. Estimation was carried out using finite element method in as non-steady state. Analytical results can provide useful information the optimal design of porthole die.

A Bonding Surface Behavior of Bi-metal Bar through Hydrostatic Extrusion (이중복합봉 정수압 압출시 접합면 거동에 관한 연구)

  • Park, Hun-Jae;Na, Gyeong-Hwan;Jo, Nam-Seon;Lee, Yong-Sin
    • Transactions of Materials Processing
    • /
    • v.7 no.1
    • /
    • pp.66-71
    • /
    • 1998
  • The present study is concerned with the hydrostatic extrusion process of copper-clad aluminium bar to investigate the bonding conditions as well as the basic flow characteristics. Considering the bonding mechanism of bi-metal contact surface as cold pressure welding the normal pressure and the contact surface expansion are selected as process parameters governing the bonding conditions, in this study the critical normal pressure required for the local extrusion-the protrusion of virgin surfaces by the surface expansion at the interface-is obtained using a slip line method and is then used as a criteron for the bonding. A rigid plastic finite element method is used to analyze the steady state extrusion process. The interface profile of bi-metal rod is predicted by tracking the paths of two particles adja-process. The interface profile of bi-metal rod is predicted by tracking the paths of two particles adja-cent to interface surface. The contact surface area ration and the normal pressure along the interface are calculated and compared to the critical normal pressure to check bonding. It is found that the model predictions are generally in good agreement with the experimental observations. The compar-isons of the extrusion pressure and interface profile by the finite element with those by experi-ments are also given.

  • PDF

Pressurization and Initial Extrusion of a Squeezed O-Ring into a Clearance Gap (유체압력(流體壓力)에 의한 Squeezed O-ring의 압착(壓着)과 초기(初期) 압출(押出) Mechanism)

  • Kim, Won-Ho
    • Elastomers and Composites
    • /
    • v.30 no.3
    • /
    • pp.235-246
    • /
    • 1995
  • When an O-ring is installed in a high fluid pressure device, a section of the O-ring is extruded into the piston-cylinder clearance gap. Any tendency towards extrusion will induce wear in dynamic applications, leading to premature failure of the seal. In this study, the mechanism of initial extrusion of the O-ring was studied, 1.e., how much amount of the O-ring will be extruded into the clearance gap at a certain pressure. The relationship between extrusion depth and a clearance gap or fluid pressure were studied by finite element analysis (FEA). After that, Salita's experimental data were analyzed. The result is that Initial extrusion depth for an O-ring into a clearance gap was 1.11 times the product of dimensionless pressure difference $(p-p_1)/E$ and clearance gap c. The required pressure $p_1$ for zero extrusion depth was found to decrease logarithmically with increasing clearance gap.

  • PDF

Calculation of Contact Pressure to the Die of Axisymmetric Extrusion by Using Upper Bound Solution (축대칭 압출 공정에서 상계법을 이용한 금형 접족면압의 계산)

  • Choi Young;Yeo Hong-Tae;Hur Kwando
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.21 no.12
    • /
    • pp.133-139
    • /
    • 2004
  • In general, the contact pressure to the die cannot be easily determined by using upper bound solution. Recently, the authors have proposed the method determining the contact pressure with the upper bound solution for the forming with the plane stain plastic deformation. In this paper, the method is applied to an axisymmetric forward extrusion process. The contact pressure to the die of the axisymmetric extrusion has been determined with the upper bound solution and compared with the result of rigid plastic FEM. The optimal semi-angles of die have been obtained minimizing the relative contact pressure to die fur the extrusion ratio.

Effect of Die and Lubrication in Fine Wire Cold Hydrostatic Extrusion (극세선 냉간 정수압 압출에서 금형과 윤활의 영향)

  • Na K. H.;Park H. J.;Kim S. S.;Yoon D. J.;Choi T. H.;Kim E. Z.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2002.02a
    • /
    • pp.225-230
    • /
    • 2002
  • As in most metal forming processes, die and lubrication are of vital importance in hydrostatic extrusion. An efficient die design and lubrication system selection reduce the pressure required for a given reduction ratio by lowering friction at the billet-die interface. In contrast to the conventional macroscopic extrusion, fine-wire fabrication requires higher extrusion pressure and effect of friction is much more significant. Forming fine Au, Ag, and Cu wire with hydrostatic extrusion process in cold condition, the effect of extrusion die angle, lubrication and billet's initial diameter was studied.

  • PDF

The Effect of Chamber Bottom Shape on Die Elastic Deformation and Process in Condenser Tube Extrusion (접합실 바닥형상이 컨덴서 튜브 직접압출 공정 및 금형탄성변형에 미치는 영향)

  • Lee, Jung-Min;Kim, Byung-Min;Jung, Young-Deuk;Cho, Hoon;Cho, Hyung-Ho
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.20 no.5
    • /
    • pp.66-72
    • /
    • 2003
  • In case of hollow cylinder extrusion using porthole die, the effects of extrusion parameters-temperature, the speed of extrusion, the shape of the die and mandrel-on metal flow in porthole die extrusion of aluminum have been investigated. However, there have been few studies about condenser tube extruded by porthole die. Original metal flow of condenser tube by porthole die extrusion is similar to hollow cylinder extrusion but the estimation of metal flow for extrusion parameters is different. For example, variation of chamber length in hollow extrusion only affects the welding pressure, however, the welding chamber length in condenser tube extrusion influences to the welding pressure as well as the deflection of mandrel. This study was designed to evaluate metal flow, welding pressure, extrusion load, tendency of mandrel deflection according to angular variation in the bottom of chamber in porthole die. Estimation was carried out using finite element method in as non-steady state. Analytical results can provide useful information the optimal design of porthole die.

An Upper Bound Analysis of the Three-Dimensional extrusion of Shapes with the Use of Dual Stream Functions( I ) (유선함수를 이용한 3 차원압출의 상계해석)

  • 김희송;조용이
    • Journal of the Korean Society of Safety
    • /
    • v.7 no.4
    • /
    • pp.85-94
    • /
    • 1992
  • This paper, discribes analysis of theree - dimensional extrusion with the use of dual stream functions, By this method admissible velocity fields for the extrusion of three- dimensional flow was newly derived kinematically. For square section the extrusion pressure was calculated by numerical solution program which was based on the upper bound analysis. The relationship between relative extrusion pressure and reduction of area, relative die length and constant friction factors were successfully calculated which was newly developed in this study. The results could be applied to design extrusion die.

  • PDF

A Bonding Surface Behavior of Bi-metal Bar through Hydrostatic Extrusion (이중복합봉 정수압 압출시 접합면 거동에 관한 연구)

  • 박훈재;나경환;조남선;이용신
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 1997.03a
    • /
    • pp.140-143
    • /
    • 1997
  • The present study is concerned with the hydrostatic extrusion process of copper-clad aluminium bar to investigate the basic flow characteristics. Considering the bonding mechanism of bi-metal contact surface as cold pressure welding, the normal pressure and the contact surface expansion are selected as process parameters governing the bonding condition. The critical pressure required for the bonding at the interface is obtained by solving a "local extrusion" using a slip line meyhod. A viscoplastic finite element method is used to analyze the steady state extrusion process. The boundary profile of bi-metal rod is predicted by tracking a particle path adjacent to interface surface. The variations of contact surface area and the normal pressure along the interface profile are predicted and compared to those by experiments.

  • PDF