• Title/Summary/Keyword: Extrusion Load

Search Result 148, Processing Time 0.024 seconds

Die Design of Hot Extrusion for Hexagonal Insert (Hexagonal 인서트용 열간압출 금형설계)

  • 권혁홍;이정로
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.11 no.1
    • /
    • pp.32-37
    • /
    • 2002
  • The use of hexagonal ceramic inserts for copper extrusion dies offers significant technical and economic advantages over other forms of manufacture. In this paper the data on the loading of the tools is determined from a commercial FEM package as the contact stress distribution on the die-workpiece interface and as temperature distributions in the die. This data can be processed as load input data for a finite element die-stress analysis. Process simulation and stress analysis are thus combined during the design and a data exchange program has been developed that enables optimal design of the dies taking into account the elastic deflections generated in shrink fitting the die inserts and that caused by the stresses generated in the process. The stress analysis of the dies is used to determine the stress conditions on the ceramic insert by considering contact and interference effects under both mechanical and thermal loads.

Design of Hot Extrusion Dies for Hexagonal Insert (Hexagonal 인서트용 열간압출 금형설계)

  • 권혁홍;이정로
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2001.04a
    • /
    • pp.72-77
    • /
    • 2001
  • The use of hexagonal ceramic inserts for copper extrusion dies offers significant technical and economic advantages over other forms of manufacture. In this paper the data on the loading of the tools is determined from a commercial FEM package as the contact stress distribution on the die-workpiece interface and as temperature distributions in the die. This data can be processed as load input data for a finite element die-stress analysis. Process simulation and stress analysis are thus combined during the design, and a data exchange program has been developed that enables optimal design of the dies taking into account the elastic deflections generated in shrink fitting the die inserts and that caused by the stresses generated in the process. The stress analysis of the dies is used to determine the stress conditions on the ceramic insert by considering contact and interference effects under both mechanical and thermal loads.

  • PDF

Characteristic Analysis of Powder Forging Processes for Engine Pistons by Finite Element Analysis (유한요소 해석을 통한 피스톤 분말단조 공정의 특성 분석)

  • Jo, Jin-Rae;Ju, Yeong-Sin;Kim, Yeong-Ho
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.24 no.8 s.179
    • /
    • pp.2042-2049
    • /
    • 2000
  • This paper is concerned with the comparison of forging characteristics between forward and backward processes, through the three-dimensional finite element simulation, for the aluminum powder forging of engine pistons. Starting from the theoretical formulation of velocity and temperature fields in the sintered preform during the process, we examine the comparative distributions of relative density, effective stress and temperature as well as the variations of total forging load and total volume reduction. Through the comparative results, we find out that the forward method provides better forging characteristics than the backward method.

A Study on Developementof UBST Program for Axisymmetric Metal Forming Process (축대칭 성형공정에 대한 유동함수 상계요소법의 프로그램 개발에 관한 연구)

  • 김영호;배원병;박재우;엄태준
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 1995.03a
    • /
    • pp.124-130
    • /
    • 1995
  • An upper-bound elemental stream function technique(UBST) is proposed for solivng forging and backward extrusion problems that are geometrically complex or need a forming simulation . And in the forging problems, this study investigates that layer of elements effects dissipation of total energy and load. The element system of UBSTuses the curve fitting property of FEM and the fluid incompressiblity of the stream function . The foumulated optimal design problems with constraints ae solved by the flixible toerance method. In the closed-die forging and backward extrusion, the result of layer of element by this study produces a lower upper-bound solution than that fo UBET and conventional layer of element . And the main advantage of UBST program is that a computer code, once written , can be used for a large variety problems by simply changing the input data.

  • PDF

CrN and TiN Coatings for the Wear Resistance of Extrusion Mold for Magnesium (마그네슘 압출용 금형의 내마모성 향상을 위한 CrN, TiN 코팅)

  • Lee, Su-Young;Kim, Sang-Ho
    • Journal of Surface Science and Engineering
    • /
    • v.44 no.6
    • /
    • pp.233-238
    • /
    • 2011
  • The friction and wear characteristics of CrN and TiN coatings on SKD61 which is mold material using for extrusion of AZ80 magnesium alloy were investigated. The coatings were deposited by the arc ion-plating method, and the thickness were about $3.59{\mu}m$ and $3.28{\mu}m$, respectively. Reciprocating friction wear tests were conducted by varying pin load and temperature of counter substrate at un-lubricated condition. The pin loads were 11, 15 and 19 kgf, and the substrate temperatures were room temperature and $120^{\circ}C$. CrN coating which has a lower friction coefficient and a smaller adhesive wear with AZ80 magnesium alloy showed better wear resistance than TiN coating.

An Analysis on the Forming Process of a Power Assisted Steering Part (PAS 부품의 성형공정해석)

  • 박성호;이호용;황병복
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 1996.03b
    • /
    • pp.7-15
    • /
    • 1996
  • A Manufacturing process of the power steering worm blank is analyzed by FEM aimulation. The process includes mainly three operations such as indentation, extrusion, and upsetting, which was designed bya forming equipment expert. The results of simulation are summarized in terms of load-stroke relationships, die pressure distributions, effective strain distribution, and deforming patterns for each forming operation. Also, Efforts are focused to get the reason that the tool expert designed the forming process in three operations. The results of the simulation are to be useful for the next advanced process planning in terms of good dimesional accuracy, savings in material and machining, no deforaming defects and imporvements in mechanical properties.

  • PDF

A Study on the Determination of Initial Biller for Axisymmetric Cold Forging Products Using Neural Networks (신경망을 이용한 축대칭 냉간 단조품의 초기 소재 결정에 관한 연구)

  • 김영호;배원병;박종옥
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1994.10a
    • /
    • pp.217-222
    • /
    • 1994
  • This paper describes the determination of optimal initial billet size for axisymmetric cold forging products using neural networks. The determination of optimal initial billet size is very important in forging design and forming sequence design, because the result of such designs and forming load can be different by variable initial billet sizes. The forming difficulty has been defined as the degree of difficulty in forming by 3 process ' forward extrusion, backward extrusion and upsetting. By neural networks a forming difficulty can be determined with the ratio of shape and forming process. From the graph of maximum, minimum, and average forming difficulties by variable billet sizes, the optimal billet size can be determined. The initial billets of a solid part and a hollow part whichwas determined by this study are compared with the sequence drawing generated by the one of forming sequence design system.

  • PDF

UBET Analysis of the Combined Extrusion Using Shape Function

  • Bae, Won-Byong;Kim, Young-Ho-;Kim, Jae-Cheol-
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1994.10a
    • /
    • pp.205-209
    • /
    • 1994
  • The main purpose of this study is constructing new velocity fields on the base of shape function used in finite element method and showing the possibility of application it to metal forming processes. Utilizing the 8-node quadratic rectangular element, we expressed the velocity within the deformation region by interpolating the velocity of each nodal points. And the upper-bound formulation from this velocity fields was derived. In order to confirm the validity of this method we applied it to axisymmetic combined extrusion problem. the results of load show that this method is on better agreement with experiment than the conventional UBET, and also the flow pattern and profile of extruded part are reasonable.

  • PDF

Design of the Radial Extrusion Process for the General-Purpose Flange Using Model Material (모델재료를 이용한 범용 플랜지의 레이디얼 압출 공정설계)

  • Lee, Sang-Don;Byon, Sung-Kwang
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.17 no.2
    • /
    • pp.114-120
    • /
    • 2008
  • This study is to compare and analyze the material flow, deformation characteristics, and forming load of flange by means of similitude experimental method of model material using plasticine. In order to find optimal forming conditions, prototype experiments were designed to investigate forming characteristics of general-purpose flange under various working conditions. As a result of prototype experiments, billet thickness and gap-height ratio was found to be the most influential experimental parameter in flange forming. Forming loads from prototype experiments were compared to the results of finite element analysis after conducting estimation of forming loads of real material. Results of prototype experiments based on model material techniques are expected to be used as a basic data of die design f3r the development of products and process.

BUILDABILITY OF MORTAR FEEDSTOCK IN MATERIAL EXTRUSION ADDITIVE MANUFACTURING

  • JINSOO PARK;HOJAE LEE;HANSHIN CHOI
    • Archives of Metallurgy and Materials
    • /
    • v.65 no.3
    • /
    • pp.1069-1072
    • /
    • 2020
  • Mortar feedstock is extruded to form bead and it is selectively placed line by line in the material extrusion additive manufacturing. With respects to part building process healthiness, load-supporting ability of overlaid beads is emphasized as buildability. Buildability is primarily dependent on thixotropic properties of feedstock and vertical overlapping schedule. In the present study, water-to-binder (w/b) ratio was chosen as material aspect to assess buildability. Uneven bead shape evolution and premature failure were highlighted owing to low yield stress of high w/b ratio feedstock. Feedstock with optimum w/b ratio showed good buildability even at the interval time of 19 sec.