• Title/Summary/Keyword: Extrusion

검색결과 1,952건 처리시간 0.108초

COMBINED FORWARD-BACKWARD EXTRUSION WITH CONTROLLED REVERSAL RAM MOTION -Effect of Reversal Ram Motion-

  • Hanami S.;Matsumoto R.;Otsu M.;Osakada K.;Hayashida D.
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2003년도 The 8th Asian Symposium on Precision Forging ASPF
    • /
    • pp.162-166
    • /
    • 2003
  • In combined forward-backward extrusion with controlled forward speed by a counter punch, accurate parts with forward rod can be formed. As an extension of this method, reverse extrusion is proposed, in which the extruded forward rod is pushed back while the main punch is kept at the final position after the forward-backward extrusion process. The experiment is carried out using lead as a model material. With the reverse extrusion method, longer forward rods can be formed without under-filling defect than that by combined extrusion with controlling extrusion speed.

  • PDF

12홀 컨덴서 튜브의 열간 압출 공정해석 및 금형의 강도예측 (Process analysis and prediction of die strength of condenser tube with 12 holes in hot extrusion)

  • 이상호;조형호;김병민
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2005년도 추계학술대회 논문집
    • /
    • pp.436-439
    • /
    • 2005
  • Condenser tube has been used as a component of heat exchanger in automobile and air conditioning apparatus. In this paper, porthole die extrusion that is advantageous to form long hollow section tube is analyzed by direct extrusion of condenser tube with 12 holes. A study on extrusion process is performed through the 3D FE simulation at non-steady state and extrusion experiments. Especially, weldability, extrusion load and die defects were estimated try FE-simulation. This study present the redesigned die of direct extrusion in consideration of the results obtained from FE-analysis.

  • PDF

반응고 A356 합금의 재가열 특성 및 반용융 압출 (Thixo Extrusion and Reheating Characteristics of Semi Solid A356 Alloy)

  • 김대환;정현주;심성용;임수근;이상용
    • 한국주조공학회지
    • /
    • 제34권4호
    • /
    • pp.123-129
    • /
    • 2014
  • This work presents the results of a thixo-extrusion process applied to aluminum alloy and and reheating characteristics of semi-solid A356 Alloy using have been discussed. The reheating experiment was performed using an electric resistance furnace and multi-stage heating for uniform reheating. The thixo-extrusion was performed at the optimal reheating conditions of the semi-solid A356 alloy, the the extrusion conditions were an extrusion ratio of 33 and ram speed of 6 mm/sec. The results showed that the thixo-extrusion of semi-solid A356 alloy fabricated by the cooling slope reduced the extrusion pressure by 180% in comparison with hot extrusion, and that a sound extrusion could be obtained in spite of the same extrusion ratio and strain rate.

방열판 직접압출공정의 성형성 향상에 관한 연구 (A Study on Improvement of Extrudability for Extrusion Process of Heat Sink)

  • 이정민;김병민;강충길
    • 소성∙가공
    • /
    • 제13권5호
    • /
    • pp.422-428
    • /
    • 2004
  • At present, the design of extrusion dies and operation in extrusion companies are primarily based on trial and error. The experience of the die designer, the press operator and the die corrector determine the performance of the extrusion die and the efficiency of the process. In order to produce defect-free products of desirable quality in terms of strength, surface quality and geometrical dimensions, it is important to obtain more knowledge of the processes that occur during extrusion. Recently, to reduce the costs of designing and manufacturing of extrusion dies, and to ensure the quality of the extruded products, numerical simulation for extrusion processes such as FEM (finite element method) is applied increasingly and becomes a very important tool for the design and development of new products. However, most of the studies about FE simulation have been accomplished for simple geometry and low extrusion ratio in the filed of steady metal flow conditions. The extruded products of AI alloy in industrial practice involve complicated sectional geometry. This study was designed to reduce the time of die design and manufacturing in the extrusion process using FEM simulation. FEM simulations of extrusion process were performed in non-steady states conditions by changing weld plate included in extrusion die set. Product which was employed in this study is heat sink that has been used in the parts of heat exchanger of electric circuits. It is generally applied for aluminum or its alloys due to heat efficiency and easy production of complicated shapes, and manufactured by extrusion process. The simulated results showed that weld plate shape in extrusion dies influences meta] flow and dimensional accuracy of products.

Effect of extrusion on available energy and amino acid digestibility of barley, wheat, sorghum, and broken rice in growing pigs

  • Ge Zhang;Gang Zhang;Jinbiao Zhao;Ling Liu;Zeyu Zhang
    • Animal Bioscience
    • /
    • 제37권6호
    • /
    • pp.1085-1095
    • /
    • 2024
  • Objective: The main objective of this study was to determine available energy and nutritional digestibility of extruded cereals and the effect of extrusion on the nutritional value of feed ingredients, aiming to provide scientific basis for efficient application of extrusion in the diets of growing pigs. Methods: In Exp. 1, 48 crossbred growing pigs (Duroc×Landrace×Yorkshire) with an initial body weight (BW) of 34.6±2.2 kg were selected and fed with eight diets (non-extrusion or extrusion) to determine the digestible energy (DE), metabolizable energy (ME), and nutrients digestibility. Eight diets included extruded grains (barley, wheat, sorghum, or broken rice), while four had unprocessed grains. In Exp. 2, 9 diets were formulated including 4 cereals with extrusion or non-extrusion and a N-free diet. In addition, 9 growing pigs (BW = 22.3±2.8 kg) were fitted with T-cannula in the distal ileum and arranged in a 9×6 Youden square design. Results: Results show that apparent total tract digestibility of gross energy, dry matter, organic meal, ether extract, neutral and acid detergent fiber was not affected by the extrusion process and there was no interaction between cereal type and extrusion treatment on DE, ME. However, the apparent total tract digestibility for crude protein (CP) increased markedly (p<0.05). The standardized ileal digestibility (SID) of all amino acids (AA) except for leucine remarkably increased by extrusion (p<0.05). There was an interaction on the SID of arginine, leucine, isoleucine, methionine, phenylalanine, cystine, and tyrosine in growing pigs between type of grain and extrusion treatment (p<0.05). Conclusion: Extrusion increased the ileal digestibility of CP and most AA in cereals, however, the DE and ME of cereals were not affected in growing pigs.

회전압출다이를 이용한 헬리컬 핀붙이 원형단면 압출가공에 관한 연구 (A Study of the Extrusion Process of Circular Section Products with Helical Fins by Rotating Extrusion Dies)

  • 박승민;진인태
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2004년도 춘계학술대회 논문집
    • /
    • pp.31-34
    • /
    • 2004
  • A new extrusion process of the circular section product with helical fins could be developed by using rotating extrusion dies. The twisting of extruded product is caused by the twisted conical die surface connecting the die entrance section and the die exit section linearly. But, until now, because the process has used fixed extrusion dies, it needs high pressure in order to twist billet and form fin shape on the surface of billet. So, during extruding billet, in order not to twist billet, the extrusion dies is needed to rotate itself instead of twisting billet. And in order to rotate dies, the shape of inside contour of extrusion dies must have conical type with twisted Inclined die surface connecting the die entrance section and the die exit section linearly. The results of experiments show that, in spite of using twisted extrusion dies, twisting of the billet should not happen because of rotating dies in the opposite direction of twisting direction of billet during extruding billet, and, from the results, it shows that it can decrease the power of extrusion pressure and could prevent crack of teeth for fin forming.

  • PDF

소형 헬리컬 기어 제조를 위한 분말 압출 금형 제작 및 실험 (Manufacturing Powder Extrusion Die and Experiment for Fabrication of Miniature Helical-Gears)

  • 황대원;이경훈;김병민
    • 소성∙가공
    • /
    • 제19권5호
    • /
    • pp.283-289
    • /
    • 2010
  • Extrusion process in the bulk material for fabrication of miniature helical gears has problems such as a high forming load and short tool life because the cross-section is complex and asymmetry. To overcome these problems, in this study, miniature helical gears were fabricated by Zn-22Al powder hot extrusion. The included die angle for minimum extrusion load and improving die filling was determined by FE-simulation. The Zn-22Al spheroidal powder produced by gasatomization were compacted and sintered for extrusion experiment. The dimension of helical-gear is 0.3mm in module, 3.35mm in pitch diameter, $15^{\circ}$ in helix angle and the number of teeth is 12. All of the extrusion experiments were performed with internal helical gear die which was machined by precision electric discharge machining using the electrode. The experiment was conducted at $190^{\circ}C$ to $310^{\circ}C$ to obtain extrusive and mechanical properties. The extruded helical gears were analyzed through extrusion load, Vickers hardness and SEM images for each extrusion temperature. The powder hot extrusion process was successfully applied to fabricate a miniature helical gear.

분말압출법으로 제조된 $SiC_p$/2024Al 복합재료에 있어서 압출온도와 다이각이 기계적 성질에 미치는 영향 (The Effect of Extrusion Temperature and Die Angle on Mechanical Properties of $SiC_p$/2024Al Composites Fabricated by Powder Extrusion Method)

  • 성병진
    • 한국분말재료학회지
    • /
    • 제2권1호
    • /
    • pp.44-52
    • /
    • 1995
  • Effects of the extrusion temperature and die angle on the tensile properties of SiCIyAl composites in powder extrusion have been investigated. SiCP/Al composites were extruded at various extrusion temperatures (450, 500, $550^{\circ}C$) under the extrusion ratio of 25 : 1. The ram speed was maintained at 13 cm/min for all the extrusion conditions. The surface of the extruded rod appeared to be smooth without tearing at 450 and 50$0^{\circ}C$, whereas it was very rough due to tearing at $550^{\circ}C$. It was found that the tensile strength and elongation of the composites extruded at $500^{\circ}C$ are greater than those of composites extruded at $450^{\circ}C$ This is due to the easier plastic deformation of composite extruded at $500^{\circ}C$, compared with the composites extruded at $450^{\circ}C$. The effect of die angle was examined under 20=60, 120, $180^{\circ}$die angles at extrusion temperature of $500^{\circ}C$ under 25:1 extrusion ratio. The tensile strength of the composites extruded with 20=$60^{\circ}$approved to be higher than that of the composties extruded with 28 : 120 and $180^{\circ}$This is attributable to the higher extrusion pressure, which mixed composite powders could be densely consolidated at elevated temperatures, resulting from high friction force between billet and sliding surface of conical die.

  • PDF

Mg 합금(AZ31)의 열간 정수압 압출 특성에 관한 연구(II) (The Characteristic of a Hydrostatic Extrusion of Magnesium Alloy(AZ31) - II)

  • 서영원;정하국;나경환;윤덕재
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2005년도 춘계학술대회 논문집
    • /
    • pp.144-147
    • /
    • 2005
  • In hydrostatic extrusion the billet in the container is extruded through a die with a liquid acting as a pressure medium, instead of by the direct application of the load by a ram. And the extrusion pressure can be affected by the flow stress and they are affected by the temperature. So in this study the temperature is the main issue with a extrusion ratio and a half die angle. As extrusion temperature goes down from $300^{\circ}C$ to $200^{\circ}C$, tensile strength goes up to 310MPa. Because velocity of extrusion is higher than the conventional extrusion, there is another characteristic in the sense of microstrure. The temperature was sotted to $300^{\circ}C,\;250^{\circ}C,\;200^{\circ}C$, respectively. There is a increase of extrusion pressure abot $15\%$.

  • PDF

포트홀 다이를 이용한 Al1050 컨덴서 튜브의 직접압출공정 기술 개발 (Development of Direct Extrusion Process on Al 1050 Condenser Tube by using Porthole Die)

  • 이정민;김병민;강충길;조형호
    • 한국정밀공학회지
    • /
    • 제21권7호
    • /
    • pp.53-61
    • /
    • 2004
  • Condenser tube which is used for a cooling system of automobiles is mainly manufactured by conform extrusion. However, direct extrusion using porthole die in comparison with conform extrusion has many advantages such as improvement of productivity, reduction of production cost etc. In general, the porthole die extrusion process is useful for manufacturing long tubes with hollow sections and consists of three stages(dividing, welding and forming stages). Especially, Porthole die for producing condenser tube is very complex. Thus, in order to obtain the detailed mechanics, to assist in the design of proper die shapes and sizes, and to improve the quality of products, porthole die extrusion should be analyzed in as non-steady state as possible. This paper describes FE analysis of non-steady state porthole die extrusion for producing condenser tube with multi-hole through 3D simulation in the non-steady state during the entire process to evaluate detailed metal flow, temperature distribution, welding pressure and extrusion load. Also to validate FE simulation of porthole die extrusion, a comparison of simulation and experiment results was presented in this paper.