• Title/Summary/Keyword: Extruding

Search Result 144, Processing Time 0.023 seconds

Development of a Process to Simultaneously Weld and Extrude Pipe Using a Spring Type Wire Material (스프링형상 와이어소재를 이용한 접합동시 파이프 압출성형공정 개발에 관한 연구)

  • Ku, K.M.;Kim, T.H.;Jin, I.T.
    • Transactions of Materials Processing
    • /
    • v.24 no.5
    • /
    • pp.317-322
    • /
    • 2015
  • A process for the concurrent welding and extruding of pipe was designed for continuous production of fin tubes. Unlike a conventional pipe extrusion, the new process is able to extrude a pipe continuously without limit of length by using spring type wire material. The current paper provides the basic research for welding during the extrusion using a spring type wire material. The object of the current study is to investigate the possibility that the spring type wire material could be extrude into a welded pipe. The appropriate extrusion ratio was selected through investigation of loads using computer simulations. As a result, experiments showed that pipe could be welded and simultaneously extruded with spring type wire material of aluminum. The tensile strength of the welded and extruded aluminum pipe can reach 80% of tensile strength of original aluminum feedstock.

An alternative approach to extruding a vertically impacted lower third molar using an orthodontic miniscrew: A case report with cone-beam CT follow-up

  • Cortes, Arthur Rodriguez Gonzalez;No-Cortes, Juliana;Cavalcanti, Marcelo Gusmao Paraiso;Arita, Emiko Saito
    • Imaging Science in Dentistry
    • /
    • v.44 no.2
    • /
    • pp.171-175
    • /
    • 2014
  • One of the most common oral surgical procedures is the extraction of the lower third molar (LTM). Postoperative complications such as paresthesia due to inferior alveolar nerve (IAN) injury are commonly observed in cases of horizontal and vertical impaction. The present report discusses a case of a vertically impacted LTM associated with a dentigerous cyst. An intimate contact between the LTM roots and the mandibular canal was observed on a panoramic radiograph and confirmed with cone-beam computed tomographic (CBCT) cross-sectional cuts. An orthodontic miniscrew was then used to extrude the LTM prior to its surgical removal in order to avoid the risk of inferior alveolar nerve injury. CBCT imaging follow-up confirmed the success of the LTM orthodontic extrusion.

A New Cold Extrusion Process of Helical Gear and its Upper Bound Analysis (헬리컬기어의 새로운 냉간압출법과 상계해석에 관한 연구)

  • Choe, Jae-Chan;Jo, Hae-Yong;Gwon, Hyeok-Heung;Lee, Eon-Ho
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.9 no.3
    • /
    • pp.12-28
    • /
    • 1992
  • A new helical gear extrusion process was proposed and its numerical solution program based on the upper bound method was developed. In the analysis the involute curve was used as a shape of die and the upper bound method was used to calculate energy dissipation rate. By this method the power requirement and optimum conditions necessary for extruding helical gear were successfully calculated. These numerical solutions were in good agreement with experimental data. In the experiment, die life was greatly improved compared with that of Samanta process and 4 .approx. 5 class helical gear of KS standard for automobile transmission was successfully manufactured.

  • PDF

A Method of Tunnel Analysis for Automatic Concrete Lining Construction Method (자동 터널라이닝 공법에 대한 해석기법)

  • 정한중;강석화;장성욱;이승욱
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 1993.10a
    • /
    • pp.32-37
    • /
    • 1993
  • A method of tunnel analysis for a new type of tunnel construction method (ACLCM, Automatic Concrete Lining Construction Method) is presented here. ACLCM is an unique tunnel construction method which provides concrete lining at the end of shield machine by extruding concrete into the space between the excavated ground surface and the inner form (Automatic Concrete Lining Machine). Since behaviors of tunnel and the surrounding soils are greatly influenced by the construction method, existing tunnel design methods may not be applicable to the design of ACLCM tunnel. In this study, a method of ACLCM tunnel analysis is suggested to provide the prediction of behavior of ACLCM tunnel and surrounding soils as well as to check up the safety during the construction and after the completion of ACLCM tunnel

  • PDF

A Study on the Numerical Friction Model for the Extrusion (압출성형을 위한 마찰수식 모델에 관한 연구)

  • Oh P. K.;Kim J. S.;Yu S. K.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2002.11a
    • /
    • pp.15-22
    • /
    • 2002
  • To carry out perfectly the forming analysis of the extruding products, it is necessary that the friction boundary condition between dies and blanks should be worked out the accuate numerical friction models. But the numerical friction models adapting in the conventional Extrusion forming software may be large different from the actual conditions. Expecially, the use of the existing extrusion forming software is possible only in the limitted range owing to the unaccuracy of the high speed forming work. Therefore, tile prepare of this study is to develop the numerical friction model which describes the friction boundary condition mathematically well, to improve the accuracy of the extrusion farming analysis, and finally to expand the applying areas of the results.

  • PDF

A Study of Extrusion Process for Al 3003 Condenser Tube (Al 3003 컨덴서 튜브의 직접압출 연구)

  • Bae, Jae-Ho;Lee, Jung-Min;Kim, Byung-Min
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.29 no.8 s.239
    • /
    • pp.1043-1050
    • /
    • 2005
  • Condenser tube is a component of the heat exchanger in automobile and air conditioning apparatus. It is generally made from the 1000 or 3000 series Al alloys that have good heat efficiency. In the case of 3000 series, these have high strength and hardness but have the disadvantage of low extruability. The development of extruding process in condenser tube with 3000 series Al alloys is studied in this paper. A study on extrusion process is performed through the 3D FE simulation in non-steady state and extrusion experimentation. Also, nano-indentation test is employed to estimate the weldability of tubes. Especially, An evaluation of the weldability using the nano-indentation is accomplished as compared with nano-hardness of welded part and the others in cross-section of tube.

Characterization of HA/PCL composite scaffolds fabricated by layer manufacturing technology

  • Kim, Seung-Eon;Hyun, Yong-Taek;Yun, Hui-Suk;Yoon, Taek-Rim;Heo, Su-Jin;Shin, Jung-Woog
    • Proceedings of the KSME Conference
    • /
    • 2008.11a
    • /
    • pp.1409-1410
    • /
    • 2008
  • Layer manufacturing technology has been recently spotlighted as a promising candidate to fabricate porous scaffolds for tissue engineering, because it can provide three dimensional interconnectivity and different pore structures and on-demand scaffold design. This study aims to fabricate HA/PCL composite scaffolds for bone tissue engineering by a layer manufacturing technology, paste extruding deposition, and to characterize in vitro and in vivo biocompatibilities of the scaffolds. This study discusses the mechnical properties, proliferation and differentiation of osteogenic cells, and tissue in-growth and bone regeneration behavior using animal models.

  • PDF

A Study on Arbitrary Cross Section Shaped Three-Dimensional Extruion with Upper Bound Method-Finite Element Method Couple (임의 단면 형상의 3차원 압출에 대한 상계해법-유한요소법 Couple에 관한 연구)

  • 이병섭;홍성인
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 1996.03b
    • /
    • pp.145-155
    • /
    • 1996
  • The extrusion velocity of billet through a die and the shapes of the die are the important factors in the metal forming process of the extrusion of billet. in recent years, the life cycle of products is goingfaster. Although the former finite element method was capable of yielding a detailed analysis, it requires lots of time and extensive coding effort. Then, some simple devices were developed and based on upper bound method. For this purpose , a kinematically admiasible velocity field is formulated for extrusion of cylinders with arbitrary cross section and die profile on their outer surfaces by using a modified upper bound approach, which configures simulataneous extruding speeds in three directions . Also, In order to display mesh of the cold forward extrusion process using the approach , the automatic three-dimentional mesh generation produced by the approach coupled finite element method with upper bound method.

  • PDF

Development of 3D Printing Cement Based Composite Materials Applying for Exterior Finishing Material (건물 외장재 적용을 위한 3D 프린팅 시멘트 베이스 결합재 개발)

  • Shin, Hyeon-Uk;Song, Hun
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2018.05a
    • /
    • pp.83-84
    • /
    • 2018
  • 3D printing technology can be applied to various industries, and is trapped by major technologies that change existing manufacturing processes. 3D printing materials must satisfy designability, economy and productivity, and building materials are required to have strength and economy secured technology. 3D printing technology of construction field can be divided into structural materials and internal and external materials, and is mainly done by extruding and adapting. Particularly when it is applied as an exterior materials, it is mainly applied to an unstructured exterior materials and high accuracy is required. The exterior materials can be used as a cement composite materials, it is suitable also for a lamination type, and the role of a cement base bonding material is important. In this research, we developed a cementitious base binder applicable as a 3D printing exterior materials, confirmed density and strength characteristics for application as an exterior materials, a flame retardancy test for improving the fire resistance of buildings and confirmed its possibility.

  • PDF

The Preparation of Alumina Fiber by Sol-gel Method: (II) Properties of Fiber Spun by TEA Complexed Sol (졸겔법에 의한 알루미나 섬유의 제조: (II) TEA 착체졸로부터 방사한 섬유의 특성분석)

  • 최용수;이해욱;이종혁;박용일;김창은
    • Journal of the Korean Ceramic Society
    • /
    • v.32 no.9
    • /
    • pp.995-1002
    • /
    • 1995
  • The alumina fiber was obtained by extruding the TEA complexed polymeric sol, synthesized by the alkoxide sol-gel method, through nozzle. The purpose of this study was to investigate the properties of fiber spun by TEA complexed sol. The analysis of sol indicated that TEA was bonded at alkoxide precursor and the optimum molar ratio for spinning was 0.5 mole of TEA, 3 mole of H2O. The cross section of the fiber from circular nozzle was not circular but oval, which indicated that the shape of nozzle did not affect the shape of fiber. The diameter of the fiber was about 100 ${\mu}{\textrm}{m}$ in the state of dried gel fiber, 60${\mu}{\textrm}{m}$ in calcined fiber, and the tensile strength of the fiber calcined at 90$0^{\circ}C$ was 2.1$\times$108 Pa.

  • PDF