• 제목/요약/키워드: Extruder screw

검색결과 267건 처리시간 0.025초

고속 압출 전처리 공정을 이용한 Chlorella sp. 당화 및 바이오에탄올 생산 (Saccharification and Ethanol Production from Chlorella sp. Through High Speed Extrusion Pretreatment)

  • 이춘근;최운용;서용창;송치호;안주희;정경환;이상은;강도형;이현용
    • KSBB Journal
    • /
    • 제27권3호
    • /
    • pp.137-144
    • /
    • 2012
  • Among various pretreatment processes for bioethanol production, extrusion pretreatment, one of cheap and simple process was investigated to efficiently produce fermentable sugars from micro alga, Chlorella sp. The biomass was pretreated in a single screw extruder at five different barrel temperatures of 45, 50, 55, 60 and $65^{\circ}C$, respectively with five screw rotation speed of 10, 50, 100, 150 and 200 rpm. The pretreated biomass was reacted with two different hydrolyzing enzymes of cellulase and amyloglucosidase since the biomass contained different types of carbohydrates, compared to cellulose of agricultural by-products such wheat and corn stovers, etc. In general, higher glucose conversion yield was obtained as 13.24 (%, w/w) at $55^{\circ}C$ of barrel temperature and 100 rpm of screw speed conditions. In treating 5 FPU/glucan of cellulase and 150 Unit/mL of amyloglucosidase, ca. 64% of cellulose and 40% of polysaccharides in the micro alga were converted into glucose, which was higher yields than those from other reported data without applying an extrusion process. 84% of the fermentable sugars obtained from the hyrolyzing processes were fermented into ethanol in considering 50% of theoretical maximum fermentation yield of the yeast. These results implied that high speed extrusion could be suitable as a pretreatment process for the production of bioethanol from Chlorella sp.

The Processing Technology of Soy Protein Meat Analog Using Twin-Screw Extruder - Heat Transfer Analysis of Cooling Die -

  • Lee G.H.
    • Agricultural and Biosystems Engineering
    • /
    • 제6권1호
    • /
    • pp.27-33
    • /
    • 2005
  • Soy protein meat analog was produced using a twin-screw extruder attached with a cooling die. Heat transfer analysis was performed for cooling dies with various die sizes at the four different moisture contents of feed during extrusion process. The experimental design consisted of two cooling die widths (30 and 60 mm), three cooling die lengths (100, 200, and 300 mm), four product moisture contents (71.2, 67.0, 61.6 and 55.8%), and water and water plus ethylene glycol as cooling material. When water was used as cooling medium, the values of equivalent overall heat transfer coefficient $(U_e)$ for each die width of 30 and 60 mm were in the range of 187.0 - 341.4 and $358.5-191.6W/m^2^{\circ}C$ depending on the size of die length. Convective heat transfer coefficients between cooling water and inside die wall of cooling channel $(h_c)$ for both die widths of 30 and 60 mm were 588.5, 416.1, and $339.8W/m^2^{\circ}C$ for each die length of 100, 200, and 300 mm. Convective heat transfer coefficients between product and inside die wall of product channel $(h_p)$ for each die width of 30 and 60 mm were in the range of $434.6-888.1W/m^2^{\circ}C$ and $460.7-1014.5W/m^2^{\circ}C$ depending on the size of die length. When water plus ethylene glycol was used as cooling medium, the values of $U_e$ were in the range of $143.9-319.6W/m^2^{\circ}C$ and $177.8-332.7W/m^2^{\circ}C$ for each die width of 30 and 60 mm depending on the size of die length.

  • PDF

Effects of Peroxides on the Properties of Reclaimed Polypropylene/Waste Ground Rubber Tire Composites Prepared by a Twin Screw Extrusion

  • Kim, Seonggil;Lee, Minji;Lee, Hyeongsu;Jeong, Hobin;Park, Yuri;Jhee, Kwang-Hwan;Bang, Daesuk
    • Elastomers and Composites
    • /
    • 제51권1호
    • /
    • pp.17-23
    • /
    • 2016
  • In this study, the reclaimed polypropylene (RPP) and waste ground rubber tire (WGRT) were used to simulate the thermoplastic vulcanizate (TPV) for cost reduction and resources recycling. Also, we examined the effects of dicumyl peroxide (DCP) and 2,5-dimethyl-2,5-di-(tert-butylperoxy)-hexane (DTBPH) as peroxide type cross-linking agents to enhance the properties of TPV's. The components of RPP and WGRT were fixed at 30 and 70 wt%, and DCP and DTBPH were added in the concentrations from 0.5 to 1.5 phr, respectively. RPP/WGRT composites with different contents of DCP and DTBPH were prepared by a modular intermeshing co-rotating twin screw extruder. The Young's modulus of composites were decreased with increasing peroxides contents. On the other hand, tensile strength, elongation at break, and impact strength of the composites were increased with peroxide contents. We also confirmed that interfacial adhesion between RPP and WGRT was considerably improved by adding the peroxides. Taken together, DTBPH added RPP/WGRT composites exhibited better mechanical properties rather than those of DCP added composites.

A Study on the Mechanical and Thermal Properties of Polyketone/Chopped Carbon Fiber Composites

  • Kim, Seonggil;Jeong, Ho-Bin;Lee, Hyeong-Su;Park, Yu-ri;Lee, Rami;Kye, Hyoungsan;Jhee, Kwang-Hwan;Bang, Daesuk
    • Elastomers and Composites
    • /
    • 제54권4호
    • /
    • pp.345-350
    • /
    • 2019
  • In this study, aliphatic polyketone (PK)/chopped carbon fiber (CCF) composites with various CCF contents were prepared using a modular intermeshing co-rotating twin screw extruder, and their mechanical and thermal properties such as tensile, flexural, and impact strength and thermal conductivity were investigated. The amount of CCF was increased from 0 to 50 wt%. The tensile and flexural strength of the PK/CCF composites increased as the CCF content increased, but the elongation at break and impact strength was lower than that of pure PK. Thermal properties such as heat distortion temperature and thermal conductivity increased as the CCF content increased. Morphological observations revealed that fiber orientation and interface adhesion between the PK and the CCF in the PK/CCF composites were formed due to the twin screw extrusion, which contributed to improving the mechanical and thermal properties of the composites.

High-pressure rheology of polymer melts containing supercritical carbon dioxide

  • Lee Sang-Myung;Han Jae-Ro;Kim Kyung-Yl;Ahn Young-Joon;Lee Jae-Wook
    • Korea-Australia Rheology Journal
    • /
    • 제18권2호
    • /
    • pp.83-90
    • /
    • 2006
  • Supercritical carbon dioxide ($scCO_2$) has advantages of being incorporated in polymer with high solubility and of being recovered easily by depressurizing. $scCO_2$ reduces the viscosity of polymer melt and it is expected to be use as a plasticizing agent. In this work, we studied on the effect of $scCO_2$ on the rheological properties of polymer melts during extrusion process. Slit die attached to twin screw extruder was used to measure the viscosity of polymer melts plasticized by supercritical $CO_2$. A gas injection system was devised to accurately meter the supercritical $CO_2$ into the extruder barrel. Measurements of pressure drop within the die, confirmed the presence of a one phase mixture and a fully developed flow during the measurements. The viscosity measurement of polypropylene was performed at experimental conditions of various temperatures, pressures and $CO_2$ concentrations. We observed that melt viscosity of polymer was dramatically reduced by $CO_2$ addition.

Extrusion Puffing of Pork Meat-Defatted Soy Flour-Corn Starch Blends to Produce Snack-like Products

  • Jennifer J. Jamora;Rhee, Ki-Soon;Rhee, Khee-Choon
    • Preventive Nutrition and Food Science
    • /
    • 제6권3호
    • /
    • pp.163-169
    • /
    • 2001
  • To produce expanded, minimally hard extrudates from blends of raw pork meat (20%), defatted soy flour (25%), and corn starch using a single-screw extruder, various combinations of feed moisture, process temperature, and screw speed were evaluated. First series of extrusion runs were conducted according to a central composite rotatable design/response surface methodology (RSM). Upon assessing the full model for each response, insignificant terms were eliminated to determine final response surface models. Screw speed within the range evaluated was found to have no significant effect on expansion ratio (ER) or shear force (SF) of extrudates. Since examinations of the response surfaces and their generated grids of predicted values indicated that maximum ER and minimum SF were likely to be attained with a moisture-temperature combination outside the RSM experimental range, the second series of extrusion runs were conducted with several selected combinations of moisture and temperature to determine a practical optimum extrusion condition. The combination of 22.78% feed moisture, 16$0^{\circ}C$ process temperature, and 170 rpm screw speed was chosen as such a condition, and used in the final extrusion. The final product required less force to break than did commercial pretzel sticks.

  • PDF

Effects of Extrusion Conditions on the Physicochemical Properties of Extruded Red Ginseng

  • Gui, Ying;Gil, Sun-Kuk;Ryu, Gi-Hyung
    • Preventive Nutrition and Food Science
    • /
    • 제17권3호
    • /
    • pp.203-209
    • /
    • 2012
  • The effects of variable moisture content, screw speed and barrel temperature on the physicochemical properties of red ginseng powder extrudates were investigated. The raw red ginseng powders were processed in a co-rotating intermeshing twin-screw extruder. Primary extrusion variables were feed moisture content (20 and 30%), screw speed (200 and 250 rpm) and barrel temperature (115 and $130^{\circ}C$). Extruded red ginseng showed higher crude saponin contents (6.72~7.18%) than raw red ginseng (5.50%). Tested extrusion conditions did not significantly affect the crude saponin content of extrudates. Increased feed moisture content resulted in increased bulk density, specific length, water absorption index (WAI), breaking strength, elastic modulus and crude protein content and decreased water solubility index (WSI) and expansion (p<0.05). Increased barrel temperature resulted in increased total sugar content, but decreased reducing sugar content in the extrudate (p<0.05). Furthermore, increased barrel temperature resulted in increased amino acid content and specific length and decreased expansion and bulk density of extrudates only at a higher feed moisture content. The physicochemical properties of extrudates were mainly dependent on the feed moisture content and barrel temperature, whereas the screw speed showed a lesser effect. These results will be used to help define optimized process conditions for controlling and predicting qualities and characteristics of extruded red ginseng.

엇갈림형 스크류 채널 내부의 스톡스 유동과 혼합특성 해석 (Analysis of the Stokes Flow and Stirring Characteristics in a Staggered Screw Channel)

  • 서용권
    • 한국전산유체공학회지
    • /
    • 제9권4호
    • /
    • pp.55-63
    • /
    • 2004
  • The three-dimensional Stokes flow within a staggered screw channel is obtained by using a finite volume method. The geometry is intended to mimic the single screw extruder having staggered arrangement of flights. The flow solution is then subjected to the analysis of the stirring performance. In the analysis of the stirring performance, the stretching-mapping method developed by the author is employed for calculating the materials' stretching exponents, which are to be used in quantification of the mixing effect. The numerical results Indicate that the staggered geometry gives indeed far much better stirring-performance than the standard (nonstaggered) flight geometry. It was also shown that care must be given to the selection of the basis planes for evaluating the local stretching rate, and it turns out that the best method (H-method) has its basis plane just on the half way between the past and future evolution of fluid particles subjected to the defromation. In evaluating the stretching exponent, the expansion ratio must be considered which is one of the characteristic differences of the actual three-dimensional flows from the two-dimensionmal counterparts. The larger axial pressure-difference causes in general the smaller stirring performance while the flow rate is increased. The smaller channel length also increases the stirring performance.

압출공정 스크류특성 결정을 위한 전체 형상계수 (A Total Shape Factor for Determining Three-Dimensional Screw Characteristics of Extrusion Process)

  • 김시조;권태헌
    • 대한기계학회논문집
    • /
    • 제18권10호
    • /
    • pp.2533-2542
    • /
    • 1994
  • This paper suggests a simple approach to determining the screw characteristics for a three0dimensional flow in a channel with a finite aspect ratio(ratio of a width to a depth, W/H) by introducing a Total Shape Factor($F_t$) to correct a two-dimensional flow analysis for a channel with an infinite aspect ratio. In the present study, the Total Shape Factor($F_t$) was defined as a ratio of a net flow rate obtained by the three-dimensional analysis to that by the two-dimensional analysis. In the proposed approach, the quantity, $ \frac{{\partial}F_t}{\partial(H/W)}$ turns out to be almost constant and to play an important role in understanding the effects of the flights. Therefore, $ \frac{{\partial}F_t}{\partial(H/W)}$ are extensively reported in this paper in terms of several dimensionless parameters. This simple approach with such database will be very useful for extruder designers to predict the screw characteristics.

Development of polypropylene-clay nanocomposite with supercritical $CO_2$ assisted twin screw extrusion

  • Hwang, Tae-Yong;Lee, Sang-Myung;Ahn, Young-Joon;Lee, Jae-Wook
    • Korea-Australia Rheology Journal
    • /
    • 제20권4호
    • /
    • pp.235-243
    • /
    • 2008
  • The aim of this study is to explore the possibility of incorporating supercritical carbon dioxide ($scCO_2$) into twin screw extrusion process for the production of polypropylene-clay nanocomposite (PPCN). The $CO_2$ is used as a reversible plasticizer which is expected to rapidly transport polymeric chains into the galleries of clay layers in its supercritical condition inside the extruder barrel and to expand the gallery spacings in its sub-critical state upon emerging from die. The structure and properties of the resulting PPCNs are characterized using wide-angle X-ray diffraction (WAXD), transmission electron microscopy (TEM), rheometry, thermogravimetry and mechanical testing. In the processing of the PPCNs with $scCO_2$, optimum $scCO_2$ concentration and screw speed which maximized the degree of intercalation of clay layers were observed. The WAXD result reveals that the PP/PP-g-MA/clay system treated with $scCO_2$ has more exfoliated structure than that without $scCO_2$ treatment, which is supported by TEM result. $scCO_2$ processing enhanced the thermal stability of PPCN hybrids. From the measurement of linear viscoelastic property, a solid-like behavior at low frequency was observed for the PPCNs with high concentration of PP-g-MA. The use of $scCO_2$ generally increased Young's modulus and tensile strength of PPCN hybrids.