• Title/Summary/Keyword: Extremely low power

Search Result 234, Processing Time 0.025 seconds

MoO3/p-Si Heterojunction for Infrared Photodetector (MoO3 기반 실리콘 이종접합 IR 영역 광검출기 개발)

  • Park, Wang-Hee;Kim, Joondong;Choi, In-Hyuk
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.30 no.8
    • /
    • pp.525-529
    • /
    • 2017
  • Molybdenum oxide ($MoO_3$) offers pivotal advantages for high optical transparency and low light reflection. Considering device fabrication, n-type $MoO_3$ semiconductor can spontaneously establish a junction with p-type Si. Since the energy bandgap of Si is 1.12 eV, a maximum photon wavelength of around 1,100 nm is required to initiate effective photoelectric reaction. However, the utilization of infrared photons is very limited for Si photonics. Hence, to enhance the Si photoelectric devices, we applied the wide energy bandgap $MoO_3$ (3.7 eV) top-layer onto Si. Using a large-scale production method, a wafer-scale $MoO_3$ device was fabricated with a highly crystalline structure. The $MoO_3/p-Si$ heterojunction device provides distinct photoresponses for long wavelength photons at 900 nm and 1,100 nm with extremely fast response times: rise time of 65.69 ms and fall time of 71.82 ms. We demonstrate the high-performing $MoO_3/p-Si$ infrared photodetector and provide a design scheme for the extension of Si for the utilization of long-wavelength light.

Health Status of Electric Utility Workers Exposed to Extremely Low Frequency Electromagnetic Field (ELF-EMF) (근로자들의 극저주파 전자파 노출 수준에 따른 인체 영향 평가)

  • Park, Kyoung-Ho;Ahn, Yong-Ho;Kim, Tai-Jeon
    • Korean Journal of Clinical Laboratory Science
    • /
    • v.37 no.3
    • /
    • pp.220-227
    • /
    • 2005
  • Recently, the use of an electrical apparatus has brought up concerns of health risks from exposure to electromagnetic fields. EMF is composed of electric fields and magnetic fields. Heavy exposure to EMF can occur only in the vicinity of high-voltage overhead transmission lines, close to transformers and underground cables, and also close to large electrical machinery. In this thesis I have investigated the hypothesis of the correlation between occupational exposure to ELF-EMF and the risks of leukemia, anemia, cancer. Therefore, the aim of this study is to investigate whether or not ELF-EMF emitted from electric power stations and transformer substations affect some hematological parameters and tumor markers of electric utility workers. The hematological test results and tumor markers under investigation were similar in the two groups but some of parameters such as RBC, AFP, LDH showed significant difference between the two groups from two sample t-test (p<0.05). The exposure group showed increased LDH level compared to the control group by two sample t-tests. In addition, the abnormal LDH level in the exposure group was observed to be clinically significant by ${\chi}^2$-test. However, the levels of RBC, AFP observed were not clinically significant by ${\chi}^2$-test (p>0.05). These results suggested that ELF-EMF does not affect most blood test parameters except LDH of electric utility workers.

  • PDF

A Study on the Technical Regulation of Weak Electric Filed Strength Radio Equipment about 58kHz Frequency Band (58kHz 대역 미약 전계강도 무선기기 기술 기준에 관한 연구)

  • Park, Hyoung-Keun;Kim, Sun-Youb;Ra, Yoo-Chan
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.10 no.9
    • /
    • pp.2319-2325
    • /
    • 2009
  • This paper compared the output limits value of the Korean weak electric field strength wireless device in the 58kHz band with the standard values of foreign countries. Through this, the study confirmed that the Korean regulation was lower by about 50dB than those of the USA or Europe. In order to prove this, the study measured outputs by entrusting the 58kHz EAS system to two measuring companies. As a result of these measurements, electric field strengths were shown to be $112dB{\mu}V/m$ and $08dB{\mu}V/m$ respectively, and these values were confirmed to exceed the current Korean standard of $102.7dB{\mu}V/m$. Accordingly, it is deemed necessary to review the specifications of the Korean standard in the 58kHz band.

DPA-Resistant Low-Area Design of AES S-Box Inversion (일차 차분 전력 분석에 안전한 저면적 AES S-Box 역원기 설계)

  • Kim, Hee-Seok;Han, Dong-Guk;Kim, Tae-Hyun;Hong, Seok-Hie
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.19 no.4
    • /
    • pp.21-28
    • /
    • 2009
  • In the recent years, power attacks were widely investigated, and so various countermeasures have been proposed, In the case of block ciphers, masking methods that blind the intermediate values in the algorithm computations(encryption, decryption, and key-schedule) are well-known among these countermeasures. But the cost of non-linear part is extremely high in the masking method of block cipher, and so the inversion of S-box is the most significant part in the case of AES. This fact make various countermeasures be proposed for reducing the cost of masking inversion and Zakeri's method using normal bases over the composite field is known to be most efficient algorithm among these masking method. We rearrange the masking inversion operation over the composite field and so can find duplicated multiplications. Because of these duplicated multiplications, our method can reduce about 10.5% gates in comparison with Zakeri's method.

Dynamic characteristics of single door electrical cabinet under rocking: Source reconciliation of experimental and numerical findings

  • Jeon, Bub-Gyu;Son, Ho-Young;Eem, Seung-Hyun;Choi, In-Kil;Ju, Bu-Seog
    • Nuclear Engineering and Technology
    • /
    • v.53 no.7
    • /
    • pp.2387-2395
    • /
    • 2021
  • Seismic qualifications of electrical equipment, such as cabinet systems, have been emerging as the key area of nuclear power plants in Korea since the 2016 Gyeongju earthquake, including the high-frequency domain. In addition, electrical equipment was sensitive to the high-frequency ground motions during the past earthquake. Therefore, this paper presents the rocking behavior of the electrical cabinet system subjected to Reg. 1.60 and UHS. The high fidelity finite element (FE) model of the cabinet related to the shaking table test data was developed. In particular, the first two global modes of the cabinet from the experimental test were 16 Hz and 24 Hz, respectively. In addition, 30.05 Hz and 37.5 Hz were determined to be the first two local modes in the cabinet. The high fidelity FE model of the cabinet using the ABAQUS platform was extremely reconciled with shaking table tests. As a result, the dynamic properties of the cabinet were sensitive to electrical instruments, such as relays and switchboards, during the shaking table test. In addition, the amplification with respect to the vibration transfer function of the cabinet was observed on the third floor in the cabinet due to localized impact corresponding to the rocking phenomenon of the cabinet under Reg.1.60 and UHS. Overall, the rocking of the cabinet system can be caused by the low-frequency oscillations and higher peak horizontal acceleration.

An optimization design study of producing transuranic nuclides in high flux reactor

  • Wei Xu;Jian Li;Jing Zhao;Ding She;Zhihong Liu;Heng Xie;Lei Shi
    • Nuclear Engineering and Technology
    • /
    • v.55 no.8
    • /
    • pp.2723-2733
    • /
    • 2023
  • Transuranic nuclides (such as 238Pu, 252Cf, 249Bk, etc.) have a wide range of application in industry, medicine, agriculture, and other fields. However, due to the complex conversion chain and remarkable fission losses in the process of transuranic nuclides production, the generation amounts are extremely low. High flux reactor with high neutron flux and flexible irradiation channels, is regarded as the promising candidate for producing transuranic nuclides. It is of great significance to increase the conversion ratio of transuranic nuclides, resulting in higher efficiency and better economy. In this paper, we perform an optimization design evaluation of producing transuranic nuclides in high flux reactor, which includes optimization design of irradiation target and influence study of reactor core loading. It is demonstrated that the production rate increases with appropriately determined target material and target structure. The target loading scheme in the irradiation channel also has a significant influence on the production of transuranic nuclides.

A New Resource Allocation with Rate Proportionality Constraints in OFDMA Systems (OFDMA 시스템에서 비율적 전송률 분배를 위한 자원 할당)

  • Han, Seung-Youp;Oh, Eun-Sung;Han, Myeong-Su;Hong, Dae-Sik
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.45 no.1
    • /
    • pp.59-65
    • /
    • 2008
  • In this paper, a new adaptive resource allocation scheme is proposed in orthogonal frequency-division multiple access(OFDMA) systems with rate proportionality constraints. The problem of maximizing the overall system capacity with constraints on bit error rate, total transmission power and rate-proportionality for user requiring different classes of service is formulated. Since the optimal solution to the constrained fairness problem is extremely complex to obtain, a low-complexity suboptimal algorithm that separates subchannel allocation and power allocation is proposed. Firstly, the number of subchannels to be assigned to each user is determined based on the users' average signal-to-noise ratio and rate-proportion. Subchannels are subsequently distributed according to the modified max-min criterion. Lastly, based on the subchannel allocation, the optimal power allocation by solving the Language dual problem is proposed. Additionally, in order to reduce the computational complexity, iterative rate proportionality tracking algorithm is proposed for maximizing the capacity together with maintaining the rate proportionality constraint.

An Experimental Study of Wave Overtopping Characteristics on the Structure for Wave Overtopping Power Generating System (월파형 파력발전구조물의 월파 특성에 관한 실험적 연구)

  • Shin, Seung-Ho;Hong, Key-Yong
    • Journal of Navigation and Port Research
    • /
    • v.30 no.8 s.114
    • /
    • pp.649-655
    • /
    • 2006
  • Waves progressing into the coastal area can be amplified, swashed and overtopped by a wave overtopping control structure, and it converts the kinetic energy of the waves to the potential energy with a hydraulic head above the mean sea level by conserving the overflow in a reservoir. Then the potential energy in the form of hydraulic head can be converted to electric power utilizing extremely low-head hydraulic turbine. This study aims to find the most optimal shape of wave overtopping structure which maximizes overtopping volume rate of sea water. Laboratory experiments for the performance evaluation of wave overtopping control structures were carried out in three dimensional wave tank, and the three dimensional structure models with planar wave concentration shapes(B/b) were manufactured into five classes, which were optimized by cross sectional parameters of the structure, ie, length of ramp(l), gradient of inclined ramp($cot{\phi}$) and freeboard height of the wave overtopping structure($h_e$) proposed by Shin and Hong(2005). The wave overtopping discharges were investigated with 20 incident wave conditions and wave directions of $0^{\circ},\;15^{\circ},\;30^{\circ}$.

A Study on Effects of Energy Saving by Applying Energy Storage System (에너지저장시스템 적용에 의한 에너지절감 효과에 관한 연구)

  • An, Cheon-Heon;Lee, Han-Min;Kim, Gil-Dong;Lee, Hi-Sung
    • Journal of the Korean Society for Railway
    • /
    • v.12 no.4
    • /
    • pp.582-589
    • /
    • 2009
  • The energy generated by braking vehicle would simply be converted into waste heat by its braking resistors if no other vehicle is accelerating at exactly the same time. Up to 45% of the tractive power of vehicles capable of returning energy to the power supply can be regenerated during braking and that this energy can be used to feed vehicles which are accelerating at the same time. Such synchronized braking and accelerating can not be coordinated, the ESS(energy storage system, here after) stores the energy generated during braking and discharges it again when a vehicle accelerates. The ESS is able to store and discharge energy extremely quickly, consequently enabling a complete exchange of energy between vehicles, even if they are not braking and accelerating at precisely the same time, as is most frequently the case in everyday service. The energy saving rate is related to the headway. If the headway is long/short, the energy saving goes up/down, When the headway is short, the ESS can not save much regenerative energy. The headway of SeoulMetro line 2 as the worst case is very short in Korea urban transit system. So, the energy saving rate will be very low. If the ESSs are applied to another railway system, we can expect that the effectiveness is better than the results of SeoulMetro line 2. This paper presents effects of energy saving obtained by applying the ESS to SeoulMetro line 2.

Advanced Architecture using DIAM for Improved Performance of Embedded Processor (임베디드 프로세서의 성능 향상을 위한 DIAM의 진보한 아키텍처)

  • Youn, Jong-Hee;Shin, Se-Chul;Baek, You-Heung;Cho, Jeong-hun
    • The KIPS Transactions:PartA
    • /
    • v.16A no.6
    • /
    • pp.443-452
    • /
    • 2009
  • Although 32-bit architectures are becoming the norm for modern microprocessors, 16-bit ones are still employed by many low-end processors, for which small size and low power consumption are of high priority. However, 16-bit architectures have a critical disadvantage for embedded processors that they do not provide enough encoding space to add special instructions coined for certain applications. To overcome this, many existing architectures adopt non-orthogonal, irregular instruction sets to accommodate a variety of unusual addressing modes. In general, these non-orthogonal architectures are regarded compiler-unfriendly as they tend to requires extremely sophisticated compiler techniques for optimal code generation. To address this issue, we proposed a compiler-friendly processor with a new addressing mode, called the dynamic implied addressing mode(DIAM). In this paper, we will demonstrate that the DIAM provides more encoding space for our 16-bit processor so that we are able to support more instructions specially customized for our applications. And we will explain the advanced architecture which has improved performance. In our experiment, the proposed architecture shows 11.6% performance increase on average, as compared to the basic architecture.