• Title/Summary/Keyword: Extremely Low Frequency Magnetic Field

Search Result 68, Processing Time 0.037 seconds

Study on Prediction Method for ELF Transient Magnetic Field from Home Appliances (가전기기에서 발생되는 극저주파 과도자계 예측기법 연구)

  • Ju, Mun-No;Yang, Kwang-Ho;Myung, Sung-Ho;Min, Suk-Won
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.51 no.11
    • /
    • pp.616-621
    • /
    • 2002
  • With biological effects by ELF (Extremely Low Frequency) magnetic field generated from power system, the transient magnetic field from electric appliances is a major issue presently. Because the transient magnetic field induces higher current than the power frequency field inside living bodies, transient magnetic field exposure has been much focused. In this paper, it is shown that transient magnetic field from electric home appliances can be characterized as magnetic dipole moment. In this method, the dipole moment vector is assumed by allowing an uncertainty of 6dB in the estimated field. A parameter M that represents biological interaction was applied also. The proposed method was applied to 7 types of appliances (hair drier, heater, VDT, etc.) and their equivalent magnetic dipole moment and harmonic components were estimated. As the results, the useful data for quantifying magnetic field distribution around electric appliances were obtained.

The effects of extremely low frequency magnetic field on bicuculline, picrotoxin, NMDA-induced seizures in mice

  • Sung, Ji-Hyun;Jeong, Ji-Hoon;Kim, Jeong-Soo;Kum, Chan;Park, Sun-Young;Sohn, Uy-Dong
    • Proceedings of the PSK Conference
    • /
    • 2002.10a
    • /
    • pp.274.2-274.2
    • /
    • 2002
  • Some experiments have been reported that magnetic fields can cause the change of numerous neurotransmitters including excitatory and inhibitory transmitters, which are involved in seizures. In this study we aimed to examine the effect of extremely low frequency magnetic field (ELF-MF) on the sensitivity of seizure response to bicuculline, picrotoxin and NMDA in mice. Mouse were exposed to sham or 20 G ELF-MF for 24 hours and then convulsants were administered i.p. at various doses. (omitted)

  • PDF

Design and Implementation of ELF Digital Magnetic Fields Meter (극저주파 디지털 자계 측정기의 설계 및 구현)

  • Im, Jae-Yoo;Hwang, Jung-Hwan;Kim, Won-Ho
    • Journal of Satellite, Information and Communications
    • /
    • v.10 no.3
    • /
    • pp.84-88
    • /
    • 2015
  • In this paper, we present that design and implementation of digital extreme-low-frequency (ELF) magnetic meter including wireless monitoring feature. In our lifetime, it is necessary to study how much magnetic field effects to human body. In this paper, we use 3-axis coil-type magnetic sensor, magnetic measurement range is 0.03~10uT and frequency range is 40~180Hz. As magnetic sensor characteristic, frequency loss is occurred that compensated using digital equalize based on DSP processor. Measurement value can be monitored on PC through Wifi communication and measurement error is observed within 6%.

Brief Review on Exposure Characteristics, Monitoring Instruments and Threshold Limit Values for Extremely Low Frequency-Magnetic Field (ELF-MF) (직업성 극저주파 자기장 노출평가와 노출 기준에 대한 쟁점 고찰)

  • Dong-Uk, Park;Seunghee, Lee;Kyung Ehi, Zoh
    • Journal of Korean Society of Occupational and Environmental Hygiene
    • /
    • v.32 no.4
    • /
    • pp.381-392
    • /
    • 2022
  • Objectives: Objective of this study is to review briefly exposure characteristics, monitoring instruments and threshold limit values for extremely low frequency-magnetic field (ELF-MF) methods. This study was undertaken through brief literature review. We performed a literature search in PubMed to identify ELF-MF studies conducted in workplaces. Initial search keywords such as 'extremely low frequency-magnetic field (ELF-MF)' and 'electromagnetic fields (EMF)' combined or singly. We limited our review to occupational rather than general nonworkplace environmental exposures. Methods: The contents we reviewed: key industry and occupations generating ELF-MF, several direct-reading instruments monitoring ELF-MF and threshold limit values (TLV) preventing health effects may be caused by the exposure to ELF-MF. Results: The industries related to the generation and supply of electricity, electrolytic installations, welding, and induction heating and more were regarded as high ELF-MF exposure industries. All jobs handling or employed performed in power cable lines, electrical wiring, and electrical equipment are found to be exposed to ELF-MF. Threshold or ceiling limit, 1,000 µT, is established to prevent acute effects of exposure to low-frequency EMFs on the nervous system: the direct stimulation of nerve and muscle tissues and the induction of retinal phosphenes. The International Agency for Research on Cancer (IARC) has classified ELF-MF as possibly carcinogenic to humans chiefly based on epidemiological studies on childhood leukemia. However, a causal relationship between magnetic fields and several types of cancer including childhood leukemia has not been established nor has any other long-term effects. Risk management using precautionary measures, has been initiated by the US and EU to prevent chronic health effects related to ELF-MF exposure in workplaces. Conclusion: This study recommends the implementation of various measures such as theestablishment of occupational exposure limit values for ELF-MF and precautionary principle to prevent potential chronic occupational health effects may be caused by ELF-MF in Korea.

ELF 3D Magnetic Field and Eddy Current Calculation of Human Body Around Transmission Lines (송전선로 주변의 3차원 자기장 및 인체 유도 와전류 계산)

  • Myeong, Seong-Ho;Lee, Dong-Il;Sin, Gu-Yong;Han, In-Su;Park, Jong-Geun
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.51 no.10
    • /
    • pp.485-491
    • /
    • 2002
  • Since Wertheimer and Leeper reported possible adverse health effects of magnetic field in 1979, worldwide researches on this issue have been conducted. More recently, the U.S. Congress instructed the NIEHS (National Institute of Environmental Health Sciences), NIH (National Institute of Health) and DOE (Department of Energy) to direct and manage EMF RAPID (Electric and Magnetic Fields Research and Public Information Dissemination) program aimed at providing scientific evidence to clarify the potential for health risks from exposure to extremely low frequency electric and magnetic fields(ELF-EMF). Although they concluded that the scientific evidence suggesting adverse health risks of ELF-EMF is weak, the exposure to ELF-EMF cannot be recognized as entirely safe. Therefore, the purpose of this article is to describe magnetic field 3-D calculation and to evluate eddy current of human body compare to international guide line recognized one of the basic problems. In open boundary problem, Magnetic field using FEM is not advantageous in the point of the division of area and the proposition of the fictitious boundary. Therefore, we induced the analytic equation of magnetic field calculations so but the finite line segment based on Biot-Savarts law Also, Eddy currents induced due to ELF-EMF magnetic field are computed. To calculate induced currents, impedance method is used in this paper, An example model of human head with resolution of 1.27cm is used. In this paper, We evaluate the magnetic field and eddy current of human head around 765 kV transmission lines compare to international guide line.

Analysis on Harmonics Characteristics of ELF Magnetic Fields Generated by Electric Appliances (가전기기 발생 극저주파 자계 고조파 특성 해석)

  • Min Suk-Won;Song Ki-Hyun;Yang Kwang-Ho;Ju Mun-No
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.54 no.1
    • /
    • pp.31-37
    • /
    • 2005
  • With biological effects by ELF(Extremely Low Frequency) magnetic field generated from power system, the transient magnetic field from electric appliances is a major issue presently. In this paper, we measured magnetic field distributions around electric appliances in view of harmonics and analyzed them by the use of an equivalent magnetic dipole moment method. This method was applied to 19 types of appliances, and their equivalent magnetic dipole moments and harmonic components were determined. The results show that this method is applicable to many appliances and the higher frequency magnetic field may induce higher current inside living bodies.

Biological Effects of Static Magnetic Fields and ELF-Electromagnetic Field on Microcirculation in Animals

  • Ohkubo, Chiyoji;Okano, Hidyuki;Xu, Shenzhi;Gmitrov, Jraj
    • Proceedings of the Korea Electromagnetic Engineering Society Conference
    • /
    • 1999.07a
    • /
    • pp.117-129
    • /
    • 1999
  • Acute effects of locally applied of static magnetic field (SMF) and extremely low frequency electromagnetic field(ELF-EMF) to the cutaneous tissue within a rabbit ear chamber (REC)were evaluated under conscious conditions. Rabbits with the REC were subjected to intravital microscopical investigation by use of microphotoelectric plethysmography(MPPG). There was no dose-response relationship between the extent of vasomotion changes and frequencies(0,20,50, 100Hz)or power levels (1, 5, 10, 25, 50, 100, 200 mT). Under low vascular tone the both fields induce vasodilatation. The effects of SMF (1 mT) on the cutaneous microcirculatory system induced the vasodilatation with enhanced vasomotion under nor-adrenaline-induced high vascular tone as well as the vasoconstriction with reduced vasomotion under acetylcholine-induced low vascular tone. This suggests that the SMF can modulate vascular tone due to the modification of vasomotion biphasically in the cutaneous tissue.

  • PDF

Exposure Assessment of Welders to Extremely Low Frequency Magnetic Fields (일부 용접공의 극저주파 자계노출평가)

  • Jeong, Yeon Jun;Hong, Seung Cheol
    • Journal of Korean Society of Occupational and Environmental Hygiene
    • /
    • v.24 no.4
    • /
    • pp.509-517
    • /
    • 2014
  • Objectives: This study was conducted to investigate the patterns of exposure of welders to strong magnetic fields for extended periods of time on the basis of their daily activities as recorded in a logbook. Methods: Male workers whose main job is welding, specifically seven welders occupied with gas tungsten arc welding(GTAW), two performing shielded metal arc welding(SMAW), and ten engaged in gas metal arc welding(GMAW), were measured in terms of the degree to which they were exposed to extremely low frequency(ELF) magnetic fields over 24 hours by using an electromagnetic field meter(EMF meter), as well as based on a daily activity log. Results: The welders were exposed to $1.25{\pm}4.95{\mu}T$ of magnetic field per day on average. For those who spent more than half a day-735.26 minutes, or 51.1% of the day-at work, the figure averages $3.88{\pm}8.85{\mu}T$ with a maximum value of $221.28{\mu}T$. The subject welders spent $338.14{\pm}154.95$ minutes per day at home. During their stays at home, they were exposed to an average of $0.17{\pm}0.06{\mu}T$ with a maximum value of $3.50{\mu}T$. The maximum exposure of $221.28{\mu}T$ occurred when welders performed GMAW. The average exposure reached its highest at $17.71{\pm}6.96{\mu}T$ when conducting SMAW. Magnetic field exposure also depends upon posture: welders who sat while welding were exposed five times more than those who stood during work, and this difference is statistically significant. As for the relationship between distance from the welding power supply and maximum magnetic field exposure, maximum magnetic field exposure decreases as the distance increases. The average magnetic field exposure, in the meantime, showed no significant difference depending on distance. Conclusions: The following were observed through this study: 1) welders, while conducting jobs, are exposed to magnetic fields not only from the welding machine, but also from the surrounding base material due to the current flowing between the welding machine and base material, meaning that they are continuously exposed to a magnetic field; and 2) welders are more exposed to magnetic fields while they sit at a job compared to when they stand up.

Design of a Magnetic Field Source for In Vivo Experiments at Extremely Low Frequency (생체 실험용 극저주파 자기장 발생 장치의 설계)

  • 김정호;김윤명
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.14 no.8
    • /
    • pp.871-877
    • /
    • 2003
  • In this paper, the design parameters for the magnetic field source at extremely low frequency are proposed. This facility can be used fur in vivo experiments with small animals to investigate biological response to the driving magnetic fields. In case that the exposed animals are motionless, the animals may be affected by the directivity of driving field. To avoid this effect, a 2-axis ELF magnetic field driving apparatus was designed. The optimum location and number of turns of each coil were obtained by numerical analysis. Applying these data to the MATLAB code(for computation), the magnetic field distribution was obtained. The calculation result fur a well-designed facility showed that the space in which the amplitude of the magnetic field lies within the 95 % of the magnetic field distribution was more than 60 % of each axis length.