• Title/Summary/Keyword: Extreme-Climate

Search Result 542, Processing Time 0.026 seconds

Past and Future Temperature and Precipitation Changes over Korea using MM5 Model

  • Oh, Jai-Ho;Min, Young-Mi;Kim, Tae-Kook;Woo, Su-Min;Kwon, Won-Tae;Baek, Hee-Jeong
    • Proceedings of the Korean Quaternary Association Conference
    • /
    • 2004.06a
    • /
    • pp.29-29
    • /
    • 2004
  • Long term observational analysis by climatologists has confirmedthat the global warming is no longer a topic of debate among scientists andpolicy makers. According to the report of IPCC-2001 (Intergovernmental Panelon Climate Change), the global mean surface air temperature is increasinggradually. The reported increase of mean temperature is by 0.6 degree in the end of twentieth century. This could represent severe threat for propertylosses especially due to increase in the number of extreme weather arising out of global warming. period of model integration from 2001 to 2100 using output of ECHAM4/HOPE-G of Max Planet Institute of Meteorology (MPI) for IPCC SRES (Special Report on Emission Scenarios). The main results of this study indicate increase of surface air temperature by 6.20C and precipitation by 2.6% over Korea in the end of 21st century. Simulation results also show that there is increase in daily maximum and minimum temperatures while decrease in diurnal temperature range (DTR). DTR changes are diminished mainly due to relatively rapid increase of daily minimum temperature than that of daily maximumtemperature. It has been observed that increase in precipitation amount anddecrease in the number of rainy days lead to increase of pre precipitationintensity.

  • PDF

Comparative Evaluation of Reproducibility for Spatio-temporal Rainfall Distribution Downscaled Using Different Statistical Methods (통계적 공간상세화 기법의 시공간적 강우분포 재현성 비교평가)

  • Jung, Imgook;Hwang, Syewoon;Cho, Jaepil
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.65 no.1
    • /
    • pp.1-13
    • /
    • 2023
  • Various techniques for bias correction and statistical downscaling have been developed to overcome the limitations related to the spatial and temporal resolution and error of climate change scenario data required in various applied research fields including agriculture and water resources. In this study, the characteristics of three different statistical dowscaling methods (i.e., SQM, SDQDM, and BCSA) provided by AIMS were summarized, and climate change scenarios produced by applying each method were comparatively evaluated. In order to compare the average rainfall characteristics of the past period, an index representing the average rainfall characteristics was used, and the reproducibility of extreme weather conditions was evaluated through the abnormal climate-related index. The reproducibility comparison of spatial distribution and variability was compared through variogram and pattern identification of spatial distribution using the average value of the index of the past period. For temporal reproducibility comparison, the raw data and each detailing technique were compared using the transition probability. The results of the study are presented by quantitatively evaluating the strengths and weaknesses of each method. Through comparison of statistical techniques, we expect that the strengths and weaknesses of each detailing technique can be represented, and the most appropriate statistical detailing technique can be advised for the relevant research.

Vulnerability Assessment for Public Health to Climate change Using Spatio-temporal Information Based on GIS (GIS기반 시공간정보를 이용한 건강부문의 기후변화 취약성 평가)

  • Yoo, Seong-Jin;Lee, Woo-Kyun;Oh, Su-Hyun;Byun, Jung-Yeon
    • Spatial Information Research
    • /
    • v.20 no.2
    • /
    • pp.13-24
    • /
    • 2012
  • To prevent the damage to human health by climate change, vulnerability assessment should be conducted for establishment of adaptation strategies. In this study, vulnerability assessment was conducted to provide information about vulnerable area for making adaptation policy. vulnerability assessment for human health was divided into three categories; extreme heat, ozone, and epidemic disease. To assess vulnerability, suitable indicators were selected by three criteria; sensitivity, adaptive capacity, and exposure, spatial data of indicators were prepared and processed using GIS technique. As a result, high vulnerability to extreme heat was shown in the low land regions of southern part. And vulnerability to harmful ozone was high in the surrounding area of Dae-gu basin and metropolitan area with a number of automobiles. Vulnerability of malaria and tsutsugamushi disease have a region-specific property. They were high in the vicinity of the Dimilitarized zone and south-western plain, respectively. In general, vulnerability of human health was increased in the future time. Vulnerable area was extended from south to central regions and from plain to low mountainous regions. For assessing vulnerability with high accuracy, it is necessary to prepare more related indicators and consider weight of indicators and use climate prediction data based on the newly released scenario when assessing vulnerability.

Estimation of Future Design Flood Under Non-Stationarity for Wonpyeongcheon Watershed (비정상성을 고려한 원평천 유역의 미래 설계홍수량 산정)

  • Ryu, Jeong Hoon;Kang, Moon Seong;Park, Jihoon;Jun, Sang Min;Song, Jung Hun;Kim, Kyeung;Lee, Kyeong-Do
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.57 no.5
    • /
    • pp.139-152
    • /
    • 2015
  • Along with climate change, it is reported that the scale and frequency of extreme climate events show unstable tendency of increase. Thus, to comprehend the change characteristics of precipitation data, it is needed to consider non-stationary. The main objectives of this study were to estimate future design floods for Wonpyeongcheon watershed based on RCP (Representative Concentration Pathways) scenario. Wonpyeongcheon located in the Keum River watershed was selected as the study area. Historical precipitation data of the past 35 years (1976~2010) were collected from the Jeonju meteorological station. Future precipitation data based on RCP4.5 were also obtained for the period of 2011~2100. Systematic bias between observed and simulated data were corrected using the quantile mapping (QM) method. The parameters for the bias-correction were estimated by non-parametric method. A non-stationary frequency analysis was conducted with moving average method which derives change characteristics of generalized extreme value (GEV) distribution parameters. Design floods for different durations and frequencies were estimated using rational formula. As the result, the GEV parameters (location and scale) showed an upward tendency indicating the increase of quantity and fluctuation of an extreme precipitation in the future. The probable rainfall and design flood based on non-stationarity showed higher values than those of stationarity assumption by 1.2%~54.9% and 3.6%~54.9%, respectively, thus empathizing the necessity of non-stationary frequency analysis. The study findings are expected to be used as a basis to analyze the impacts of climate change and to reconsider the future design criteria of Wonpyeongcheon watershed.

Climate Change Vulnerability Assessment of Cool-Season Grasslands Based on the Analytic Hierarchy Process Method

  • Lee, Bae Hun;Cheon, Dong Won;Park, Hyung Soo;Choi, Ki Choon;Shin, Jeong Seop;Oh, Mi Rae;Jung, Jeong Sung
    • Journal of The Korean Society of Grassland and Forage Science
    • /
    • v.41 no.3
    • /
    • pp.189-197
    • /
    • 2021
  • Climate change effects are particularly apparent in many cool-season grasslands in South Korea. Moreover, the probability of climate extremes has intensified and is expected to increase further. In this study, we performed climate change vulnerability assessments in cool-season grasslands based on the analytic hierarchy process method to contribute toward effective decision-making to help reduce grassland damage caused by climate change and extreme weather conditions. In the analytic hierarchy process analysis, vulnerability was found to be influenced in the order of climate exposure (0.575), adaptive capacity (0.283), and sensitivity (0.141). The climate exposure rating value was low in Jeju-do Province and high in Daegu (0.36-0.39) and Incheon (0.33-0.5). The adaptive capacity index showed that grassland compatibility (0.616) is more important than other indicators. The adaptation index of Jeollanam-do Province was higher than that of other regions and relatively low in Gangwon-do Province. In terms of sensitivity, grassland area and unused grassland area were found to affect sensitivity the most with index values of 0.487 and 0.513, respectively. The grassland area rating value was low in Jeju-do and Gangwon-do Province, which had large grassland areas. In terms of vulnerability, that of Jeju-do Province was lower and of Gyeongsangbuk-do Province higher than of other regions. These results suggest that integrating the three aspects of vulnerability (climate exposure, sensitivity, and adaptive capacity) may offer comprehensive and spatially explicit adaptation plans to reduce the impacts of climate change on the cool-season grasslands of South Korea.

A Study on the Cooling Center Manual of Facility and Maintenance for Extreme Heat Disaster (폭염재난에 대응하는 Cooling Center 시설 및 운영기준에 관한 연구)

  • Kim, Jin-Wook
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.8 no.4
    • /
    • pp.17-22
    • /
    • 2008
  • Including heat wave, Climate change caused 150,000 casualty in 2000 and heat waves are meteorological events that pose a serious threat to human health. A heat wave is defined as "a period of abnormally and uncomfortably hot and usually humid weather". There is a need for the prevention of health effects due to weather and climate extremes. This study intends to propose the necessity of Response System to correspond to extreme heat. And this research focused on Cooling Center manual of facility and maintenance for extreme heat disaster. It would be useful to be planned based on community and to be taken a role as an E.O.C.(Emergency Operating Center). As a conclusion elderly watching system and the requirements regional cooling center facility was proposed.

A Study on the Distributions of Minimum Temperature during January in the Central Region of South Korea: focused on Minimum Temperature at Cheorwon (기압배치형별 중부지방의 1월 최저기온 분포에 관한 연구: 철원의 최저기온을 중심으로)

  • Lee, Seungho;Jang, Jiwon
    • Journal of the Korean Geographical Society
    • /
    • v.49 no.1
    • /
    • pp.32-44
    • /
    • 2014
  • This study aimed to analyze the characteristic of the distribution of minimum temperature during January in the central region of South Korea and to investigate causes for the occurrence of extreme minimum temperature in Cheorwon. January temperature distribution data which were collected from 25 weather stations in central area from 1991 to 2010 were investigated, and the difference of temperature between Cheorwon and the other stations in central region, such as Chuncheon, Hongcheon, Bonghwa, Daegwallyoung, Wonju and Jecheon were analyzed by the type of atmospheric pressure system. Daily mean temperature and mean of daily minimum temperature appear to be low at Cheorwon and at the sites in high altitudes, but the frequency of extreme cold wave such as below $-15^{\circ}C$ is also noticeable in Cheorwon. When the Siberian High has expanded and migratory anticyclone has moved onto the north of the Korean Peninsula, the temperature at Cheorwon is relatively low. Furthermore it shows a lesser difference between Cheorwon and the compared stations when the migratory anticyclone affected the area, even at basin like Bonghwa, Jecheon more lower than Cheorwon.

  • PDF

Near Future Projection of Extreme Temperature over CORDEX-East Asia Phase 2 Region Using the WRF Model Based on RCP Scenarios (RCP 시나리오 기반 WRF를 이용한 CORDEX-동아시아 2단계 지역의 가까운 미래 극한기온 변화 전망)

  • Seo, Ga-Yeong;Choi, Yeon-Woo;Ahn, Joong-Bae
    • Atmosphere
    • /
    • v.29 no.5
    • /
    • pp.585-597
    • /
    • 2019
  • This study evaluates the performance of Weather Research and Forecasting (WRF) model in simulating temperature over the COordinated Regional climate Downscaling EXperiment-East Asia (CORDEX-EA) Phase 2 domain for the reference period (1981~2005), and assesses the changes in temperature and its extremes in the mid-21st century (2026~2050) under global warming based on Representative Concentration Pathway (RCP) scenarios. MPI-ESM-LR forced by two RCP scenarios (RCP2.6 and RCP8.5) is used as initial and lateral boundary conditions. Overall, WRF can capture the observed features of temperature distribution reflecting local topographic characteristic, despite some disagreement between the observed and simulated patterns. Basically, WRF shows a systematic cold bias in daily mean, minimum and maximum temperature over the entire domain. According to the future projections, summer and winter mean temperatures over East Asia will significantly increase in the mid-21st century. The mean temperature rise is expected to be greater in winter than in summer. In accordance with these results, summer (winter) is projected to begin earlier (later) in the future compared to the historical period. Furthermore, a rise in extreme temperatures shows a tendency to be greater in the future. The averages of daily minimum and maximum temperatures above 90 percentiles are likely to be intensified in the high-latitude, while hot days and hot nights tend to be more frequent in the low-latitude in the mid-21st century. Especially, East Asia would be suffered from strong increases in nocturnal temperature under future global warming.

Evaluating the Spatio-temporal Drought Patterns over Bangladesh using Effective Drought Index (EDI)

  • Kamruzzaman, Md.;Hwang, Syewoon;Cho, Jaepil;Park, Chanwoo
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2018.05a
    • /
    • pp.158-158
    • /
    • 2018
  • Drought is a recurrent natural hazard in Bangladesh. It has significant impacts on agriculture, environment, and society. Well-timed information on the onset, extent, intensity, duration, and impacts of drought can mitigate the potential drought-related losses. Thus, drought characteristics need to be explained in terms of frequency, severity, and duration. This paper aims to characterize the spatial and temporal pattern of meteorological drought using EDI and illustrated drought severity over Bangladesh. Twenty-seven (27) station-based daily rainfall data for the study period of 1981-2015 were used to calculate the EDI values over Bangladesh. The evaluation of EDI is conducted for 4 sub-regions over the country to confirm the historical drought record-developed at the regional scale. The finding shows that on average, the frequency of severe to extreme drought is approximately 0.7 events per year. As a result of the regional analysis, most of the recorded historical drought events were successfully detected during the study period. Additionally, the seasonal analysis showed that the extreme droughts were frequently hit in northwestern, middle portion of the eastern and small portion of central parts of Bangladesh during the Kharif(wet) and Rabi(dry) seasons. The severe drought was affected recurrently in the central and northern regions of the country during all cropping seasons. The study also points out that the northern, south-western and central regions in Bangladesh are comparatively vulnerable to both extreme and severe drought event. The study showed that EDI would be a useful tool to identify the drought-prone area and time and potentially applicable to the climate change-induced drought evolution monitoring at regional to the national level in Bangladesh. The outcome of the present study can be used in taking anticipatory strategies to mitigate the drought damages on agricultural production as well as human sufferings in drought-prone areas of Bangladesh.

  • PDF

Quantifying the 2022 Extreme Drought Using Global Grid-Based Satellite Rainfall Products (전지구 강수관측위성 기반 격자형 강우자료를 활용한 2022년 국내 가뭄 분석)

  • Mun, Young-Sik;Nam, Won-Ho;Jeon, Min-Gi;Lee, Kwang-Ya;Do, Jong-Won;Isaya Kisekka
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.66 no.4
    • /
    • pp.41-50
    • /
    • 2024
  • Precipitation is an important component of the hydrological cycle and a key input parameter for many applications in hydrology, climatology, meteorology, and weather forecasting research. Grid-based satellite rainfall products with wide spatial coverage and easy accessibility are well recognized as a supplement to ground-based observations for various hydrological applications. The error properties of satellite rainfall products vary as a function of rainfall intensity, climate region, altitude, and land surface conditions. Therefore, this study aims to evaluate the commonly used new global grid-based satellite rainfall product, Climate Hazards Group InfraRed Precipitation with Station data (CHIRPS), using data collected at different spatial and temporal scales. Additionally, in this study, grid-based CHIRPS satellite precipitation data were used to evaluate the 2022 extreme drought. CHIRPS provides high-resolution precipitation data at 5 km and offers reliable global data through the correction of ground-based observations. A frequency analysis was performed to determine the precipitation deficit in 2022. As a result of comparing droughts in 2015, 2017, and 2022, it was found that May 2022 had a drought frequency of more than 500 years. The 1-month SPI in May 2022 indicated a severe drought with an average value of -1.8, while the 3-month SPI showed a moderate drought with an average value of 0.6. The extreme drought experienced in South Korea in 2022 was evident in the 1-month SPI. Both CHIRPS precipitation data and observations from weather stations depicted similar trends. Based on these results, it is concluded that CHIRPS can be used as fundamental data for drought evaluation and monitoring in unmeasured areas of precipitation.