Browse > Article
http://dx.doi.org/10.14191/Atmos.2019.29.5.585

Near Future Projection of Extreme Temperature over CORDEX-East Asia Phase 2 Region Using the WRF Model Based on RCP Scenarios  

Seo, Ga-Yeong (Division of Earth Environmental System, Pusan National University)
Choi, Yeon-Woo (Division of Earth Environmental System, Pusan National University)
Ahn, Joong-Bae (Division of Earth Environmental System, Pusan National University)
Publication Information
Atmosphere / v.29, no.5, 2019 , pp. 585-597 More about this Journal
Abstract
This study evaluates the performance of Weather Research and Forecasting (WRF) model in simulating temperature over the COordinated Regional climate Downscaling EXperiment-East Asia (CORDEX-EA) Phase 2 domain for the reference period (1981~2005), and assesses the changes in temperature and its extremes in the mid-21st century (2026~2050) under global warming based on Representative Concentration Pathway (RCP) scenarios. MPI-ESM-LR forced by two RCP scenarios (RCP2.6 and RCP8.5) is used as initial and lateral boundary conditions. Overall, WRF can capture the observed features of temperature distribution reflecting local topographic characteristic, despite some disagreement between the observed and simulated patterns. Basically, WRF shows a systematic cold bias in daily mean, minimum and maximum temperature over the entire domain. According to the future projections, summer and winter mean temperatures over East Asia will significantly increase in the mid-21st century. The mean temperature rise is expected to be greater in winter than in summer. In accordance with these results, summer (winter) is projected to begin earlier (later) in the future compared to the historical period. Furthermore, a rise in extreme temperatures shows a tendency to be greater in the future. The averages of daily minimum and maximum temperatures above 90 percentiles are likely to be intensified in the high-latitude, while hot days and hot nights tend to be more frequent in the low-latitude in the mid-21st century. Especially, East Asia would be suffered from strong increases in nocturnal temperature under future global warming.
Keywords
WRF; CORDEX-East Asia Phase 2; RCP Scenarios; climate change; extreme temperature;
Citations & Related Records
Times Cited By KSCI : 3  (Citation Analysis)
연도 인용수 순위
1 Ahn, J.-B., and Coauthors, 2016: Changes of precipitation extremes over South Korea projected by the 5 RCMs under RCP scenarios. Asia-Pac. J. Atmos. Sci., 52, 223-236, doi:10.1007/s13143-016-0021-0.   DOI
2 Ahn, J.-B., Y.-W. Choi, and S. Jo, 2018: Evaluation of reproduced precipitation by WRF in the region of CORDEX-East Asia phase 2. Atmosphere, 28, 85-97, doi:10.14191/Atmos.2018.28.1.085 (in Korean with English abstract).   DOI
3 Betts, A. K., and M. J. Miller, 1986: A new convective adjustment scheme. Part II: Single column tests using GATE wave, BOMEX, ATEX and arctic air‐mass data sets. Q. J. Roy. Meteor. Soc., 112, 693-709.   DOI
4 Bretherton, C. S., M. Widmann, V. P. Dymnikov, J. M. Wallace, and I. Blade, 1999: The effective number of spatial degrees of freedom of a time-varying field. J. Climate, 12, 1990-2009.   DOI
5 Cha, D.-H., and D.-K. Lee, 2009: Reduction of systematic errors in regional climate simulations of the summer monsoon over East Asia and the western North Pacific by applying the spectral nudging technique. J. Geophys. Res., 114, D14108, doi:10.1029/2008JD011176.   DOI
6 Cha, D.-H., and Coauthors, 2016: Future changes in summer precipitation in regional climate simulations over the Korean Peninsula forced by multi-RCP scenarios of HadGEM2-AO. Asia-Pac. J. Atmos. Sci., 52, 139-149, doi:10.1007/s13143-016-0015-y.   DOI
7 Chen, F., and J. Dudhia, 2001: Coupling an advanced land surface-hydrology model with the Penn State-NCAR MM5 modeling system. Part II: preliminary model validation. Mon. Wea. Rev., 129, 587-604.   DOI
8 Choi, S.-J., D.-K. Lee, and S.-G. Oh, 2012: Regional climate simulations over East-Asia by using SNURCM and WRF forced by HadGEM2-AO. J. Kor. Earth Sci. Soc., 32, 750-760, doi:10.5467/JKESS.2011.32.7.750 (in Korean with English abstract).   DOI
9 Choi, Y.-W., J.-B. Ahn, M.-S. Suh, D.-H. Cha, D.-K. Lee, S.-Y. Hong, S.-K. Min, S.-C. Park, and H.-S. Kang, 2016: Future changes in drought characteristics over South Korea using multi regional climate models with the standardized precipitation index. Asia-Pac. J. Atmos. Sci., 52, 209-222, doi:10.1007/s13143-016-0020-1.   DOI
10 Choi, Y.-W., and J.-B. Ahn, 2017: Impact of cumulus parameterization schemes on the regional climate simulation for the domain of CORDEX-East Asia phase 2 using WRF model. Atmosphere, 27, 105-118 (in Korean with English abstract).   DOI
11 Collins, W. D., J. K. Hackney, and D. P. Edwards, 2002: An updated parameterization for infrared emission and absorption by water vapor in the National Center for Atmospheric Research Community Atmosphere Model. J. Geophys. Res., 107, ACL17-1-ACL17-20.
12 Dasari, H. P., R. Salgado, J. Perdigao, and V. S. Challa, 2014: A regional climate simulation study using WRF-ARW model over Europe and evaluation for extreme temperature weather events. Int. J. Atmos. Sci., 2014, 704079, doi:10.1155/2014/704079.
13 Giorgetta, M. A., and Coauthors, 2013: Climate and carbon cycle changes from 1850 to 2100 in MPI-ESM simulations for the Coupled Model Intercomparison Project phase 5. J. Adv. Model. Earth Sy., 5, 572-597, doi:10.1002/jame.20038.   DOI
14 Della-Marta, P. M., M. R. Haylock, J. Luterbacher, and H. Wanner, 2007: Doubled length of western European summer heat waves since 1880. J. Geophys. Res., 112, D15103, doi:10.1029/2007JD008510.   DOI
15 Deng, H., Y. Chen, X. Shi, W. Li, H. Wang, S. Zhang, and G. Fang, 2014: Dynamics of temperature and precipitation extremes and their spatial variation in the arid region of northwest China. Atmos. Res., 138, 346-355, doi:10.1016/j.atmosres.2013.12.001.   DOI
16 Fischer, E. M., and C. Schar, 2010: Consistent geographical patterns of changes in high-impact European heatwaves. Nature Geosci., 3, 398-403, doi:10.1038/ngeo866.   DOI
17 Heikkila, U., A. Sandvik, and A. Sorteberg, 2011: Dynamical downscaling of ERA-40 in complex terrain using the WRF regional climate model. Climate Dyn., 37, 1551-1564, doi:10.1007/s00382-010-0928-6.   DOI
18 Griffiths, G. M., and Coauthors, 2005: Change in mean temperature as a predictor of extreme temperature change in the Asia-Pacific region. Int. J. Climatol., 25, 1301-1330.   DOI
19 Gu, H., Z. Yu, J. Wang, G. Wang, T. Yang, Q. Ju, C. Yang, F. Xu, and C. Fan, 2015: Assessing CMIP5 genera l circulation model simulations of precipitation and temperature over China. Int. J. Climatol., 35, 2431-2440, doi:10.1002/joc.4152.   DOI
20 Harris, I., P. D. Jones, T. J. Osborn, and D. H. Lister, 2014: Updated high-resolution grids of monthly climatic observations - the CRU TS3.10 Dataset. Int. J. Climatol., 34, 623-642, doi:10.1002/joc.3711.   DOI
21 Im, E.-S., J.-B. Ahn, and S.-R. Jo, 2015: Regional climate projection over South Korea simulated by the HadGEM2-AO and WRF model chain under RCP emission scenarios. Climate Res., 63, 249-266, doi:10.3354/cr01292.   DOI
22 Hong, J.-Y., and J.-B. Ahn, 2015: Changes of early summer precipitation in the Korean Peninsula and nearby regions based on RCP simulations. J. Climate, 28, 3557-3578, doi:10.1175/JCLI-D-14-00504.1.   DOI
23 Hong, S.-Y., J. Dudhia, and S.-H. Chen, 2004: A revised approach to ice microphysical processes for the bulk parameterization of clouds and precipitation. Mon. Wea. Rev., 132, 103-120.   DOI
24 Hong, S.-Y., Y. Noh, and J. Dudhia, 2006: A new vertical diffusion package with an explicit treatment of entrainment processes. Mon. Wea. Rev., 134, 2318-2341.   DOI
25 Im, E.-S., Y.-W. Choi, and J.-B. Ahn, 2017a: Worsening of heat stress due to global warming in South Korea based on multi-RCM ensemble projections. J. Geophys. Res., 122, 11444-11461, doi:10.1002/2017JD026731.   DOI
26 Janjic, Z. I., 1994: The step-mountain eta coordinate model: further developments of the convection, viscous sublayer, and turbulence closure schemes. Mon. Wea. Rev., 122, 927-945.   DOI
27 Im, E.-S., Y.-W. Choi, and J.-B. Ahn, 2017b: Robust intensification of hydroclimatic intensity over East Asia from multi-model ensemble regional projections. Theor. Appl. Climatol., 129, 1241-1254, doi:10.1007/s00704-016-1846-2.   DOI
28 Im, E.-S., N.-X. Thanh, Y.-H. Kim, and J.-B. Ahn, 2019: 2018 summer extreme temperatures in South Korea and their intensification under 3$^{\circ}C$ global warming. Environ. Res. Lett., 14, 094020, doi:10.1088/1748-9326/ab3b8f.   DOI
29 IPCC, 2013: Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of The Intergovernmental Panel on Climate Change. T. F. Stocker et al. Eds., Cambridge University Press. 1535 pp.
30 IPCC, 2018: Global warming of 1.5$^{\circ}C$, An IPCC special report on the impacts of global warming of 1.5$^{\circ}C$ above pre-industrial levels and related global greenhouse gas emission pathways, in the context of strengthening the global response to the threat of climate change, sustainable development, and efforts to eradicate poverty. V. Masson-Delmotte et al. Eds., World Meteorological Organization, 616 pp.
31 Katz, R. W., and B. G. Brown, 1992: Extreme events in a changing climate: Variability is more important than averages. Climatic Change, 21, 289-302.   DOI
32 Kim, G., D.-H. Cha, and C. Park, 2018: Estimation of uncertainties and projection for bias-corrected outputs of multi-regional climate models. J. Climate Res., 13, 263-273, doi:10.14383/cri.2018.13.4.263 (in Korean with English abstract).   DOI
33 KMA, 2018: Projection of fine resolution future climate change over Korean Peninsula and East Asia based on RCP Scenarios. Korea Meteorological Administration, 945 pp (in Korean).
34 Ozturk, T., M. T. Turp, M. Turkea, and M. L. Kurnaz, 2017: Projected changes in temperature and precipitation climatology of Central Asia CORDEX Region 8 by using RegCM4.3.5. Atmos. Res., 183, 296-307, doi:10.1016/j.atmosres.2016.09.008.   DOI
35 Lee, D., and Coauthors, 2017: Thermodynamic and dynamic contributions to future changes in summer precipitation over Northeast Asia and Korea: a multi-RCM study. Climate Dyn., 49, 4121-4139, doi:10.1007/s00382-017-3566-4.   DOI
36 NIMS, 2018: Climate changes of Korean Peninsula over 100 years. National Institute of Meteorological Sciences, 31 pp (in Korean).
37 Lee, D., C. Park, Y.-H. Kim, and S.-K. Min, 2016: Evaluation of the COSMO-CLM for East Asia climate simulations : sensitivity to spectral nudging. J. Climate Res., 11, 69-85, doi:10.14383/cri.2016.11.1.69 (in Korean with English abstract).   DOI
38 Lee, J.-W., S.-Y. Hong, E.-C. Chang, M.-S. Suh, and H.-S. Kang, 2014: Assessment of future climate change over East Asia due to the RCP scenarios downscaled by GRIMs-RMP. Climate Dyn., 42, 733-747, doi: 10.1007/s00382-013-1841-6.   DOI
39 Moberg, A., and P. D. Jones, 2005: Trends in indices for extremes in daily temperature and precipitation in central and western Europe, 1901-99. Int. J. Climatol., 25, 1149-1171.   DOI
40 Oh, S.-G., J.-H. Park, S.-H. Lee, and M.-S. Suh, 2014: Assessment of the RegCM4 over East Asia and future precipitation change adapted to the RCP scenarios. J. Geophys. Res., 119, 2913-2927, doi:10.1002/2013JD020693.   DOI
41 Park, B.-J., Y.-H. Kim, S.-K. Min, M.-K. Kim, Y. Choi, K.-O. Boo, and S. Shim, 2017: Long-term warming trends in Korea and contribution of urbanization: an updated assessment. J. Geophys. Res., 122, 10637-10654, doi:10.1002/2017JD027167.   DOI
42 Park, C., and Coauthors, 2016: Evaluation of multiple regional climate models for summer climate extremes over East Asia. Climate Dyn., 46, 2469-2486, doi: 10.1007/s00382-015-2713-z.   DOI
43 KMA, 2019: 2018 Abnormal Climate Report. Korea Meteorological Administration, 198 pp (in Korean).
44 Suh, M.-S., and Coauthors, 2016: Projections of high resolution climate changes for South Korea using multiple-regional climate models based on four RCP scenarios. Part 1: surface air temperature. Asia-Pac. J. Atmos. Sci., 52, 151-169, doi:10.1007/s13143-016-0017-9.   DOI
45 Park, J.-H., S.-G. Oh, and M.-S. Suh, 2013: Impacts of boundary conditions on the precipitation simulation of RegCM4 in the CORDEX East Asia domain. J. Geophys. Res., 118, 1652-1667, doi:10.1002/jgrd.50159.   DOI
46 Pingale, S. M., D. Khare, M. K. Jat, and J. Adamowski, 2014: Spatial and temporal trends of mean and extreme rainfall and temperature for the 33 urban centers of the arid and semi-arid state of Rajasthan, India. Atmos. Res., 138, 73-90, doi:10.1016/j.atmosres.2013.10.024.   DOI
47 Su, F., X. Duan, D. Chen, Z. Hao, and L. Cuo, 2013: Evaluation of the global climate models in the CMIP5 over the Tibetan Plateau. J. Climate, 26, 3187-3208, doi:10.1175/JCLI-D-12-00321.1.   DOI
48 Tang, J., S. Wang, X. Niu, P. Hui, P. Zong, and X. Wang, 2017: Impact of spectral nudging on regional climate simulation over CORDEX East Asia using WRF. Climate Dyn., 48, 2339-2357, doi:10.1007/s00382-016-3208-2.   DOI
49 Taylor, K. E., R. J. Stouffer, and G. A. Meehl, 2012: An overview of CMIP5 and the experiment design. Bull. Amer. Meteor. Soc., 93, 485-498, doi:10.1175/BAMSD-11-00094.1.   DOI
50 Torma, C., F. Giorgi, and E. Coppola, 2015: Added value of regional climate modeling over areas characterized by complex terrain-precipitation over the Alps. J. Geophys. Res., 120, 3957-3972, doi:10.1002/2014JD022781.   DOI
51 von Storch, H., H. Langenberg, and F. Feser, 2000: A spectral nudging technique for dynamical downscaling purposes. Mon. Wea. Rev., 128, 3664-3673.   DOI