• Title/Summary/Keyword: Extreme wave

Search Result 219, Processing Time 0.034 seconds

Study of energetic materials using phase change and interface theory (상 변화와 인터페이스 이론을 이용한 고에너지물질의 반응연구)

  • Kim, Ki-Hong;Kim, Hak-Jun;Kim, Hyoung-Won;Yoh, Jai-Ick
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2008.11a
    • /
    • pp.60-63
    • /
    • 2008
  • Phase change in combustion of energetic materials happens inevitably. The product gas generated by combustion is at extreme temperature and pressure state. The interaction between a gas and metal generates high strain rate deformation and complex wave phenomena. In order to perform combustion simulation containing phase changes, we develop an elegant model for phase change and provide a proof of performance via vapor explosion example.

  • PDF

The effect of typhoon translation speed and landfall angle on the maximum surge height along the coastline

  • Qian, Xiaojuan;Son, Sangyoung
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2021.06a
    • /
    • pp.153-153
    • /
    • 2021
  • Storm Storm event is one of major issues in South Korea due to devastating damage at its landfall. A series of statistical study on the historical typhoon records consistently insist that the typhoon translation speed (TS) is on slowdown trend annually, and thus provides an urgent topic in assessing the extreme storm surge under future climate change. Even though TS has been regarded as a principal contributor in storm surge dynamics, only a few studies have considered its impact on the storm surge. The landfall angle (LA), another key physical factor of storm surge also needs to be further investigated along with TS. This study aims to elucidate the interaction mechanism among TS, LA, coastal geometry, and storm surge synthetically by performing a series of simulations on the idealized geometries using Delft3D FM. In the simulation, various typhoons are set up according to different combinations of TS and LA, while their trajectories are assumed to be straight with the constant wind speed and the central pressure. Then, typhoons are subjected to make landfall over a set of idealized geometries that have different depth profiles and layouts (i.e., open coasts or bays). The simulation results show that: (i) For the open coasts, the maximum surge height (MSH) increases with increasing TS. (ii) For the constant bed level, a typhoon normal to the coastline resulted in peak MSH due to the lowest effect of the coastal wave. (iii) For the continental shelf with different widths, the slow-moving typhoon will generate the peak MSH around a small LA as the shelf width becomes narrow. (iv) For the bay, MSH enlarges with the ratio of L/E (the length of main-bay axis /gate size) dropping, while the greatest MSH is at L/E=1. These findings suggest that a fast-moving typhoon perpendicular to the coastline over a broad continental shelf will likely generate the extreme storm surge hazard in the future, as well as the slow-moving typhoon will make an acute landfall over a narrow continental shelf.

  • PDF

Investigation on Characteristics of Summertime Extreme Temperature Events Occurred in South Korea Using Self-Organizing Map (자기조직화지도(Self-Organizing Map)를 이용한 최근 우리나라 여름철 극한온도 특성 분류)

  • Lim, Won-Il;Seo, Kyong-Hwan
    • Atmosphere
    • /
    • v.28 no.3
    • /
    • pp.305-315
    • /
    • 2018
  • This study investigates the characteristic spatial patterns and dynamic processes associated with the summertime extreme temperature events in South Korea during the last 20 years (1995~2014) using Self-Organizing Map (SOM). The classified SOM patterns commonly have high temperature and anticyclonic circulation anomalies over South Korea. The two major teleconnection patterns are identified: one is from the subtropical western North Pacific (WNP) affecting to the north and the other is from the North Atlantic (NA) affecting downstream region. The meridional teleconnection pattern is related to the forcing of positive sea surface temperature (SST) anomaly over the WNP. The northward propagating Rossby wave generates the East Asia-Pacific (EAP) pattern to form an anticyclonic circulation anomaly over South Korea. On the other hand, NA SST anomalies generate an eastward Rossby wave train across the Eurasian continent, leading to the development of an anticyclonic circulation anomaly over South Korea. The EAP pattern occurs more frequently in July and August, whereas the midlatitude teleconnection pattern associated with NA SST anomalies develops more frequently in early summer (June).

Coastal Protection with the Submerged Artificial Bio-reefs (인공 Bio-reef에 의한 해변침식방지)

  • Lee Hun;Lee Joong-Woo;Lee Hak-Sung;Kim Kang-Min
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2004.11a
    • /
    • pp.159-166
    • /
    • 2004
  • The beach, a margin between the sea and the land, is an extremely dynamic zone, for it is here that the motion of the sea interacts with the sediment, rock of the land or the artificial barriers. In order to prohibit or retard erosions due to the extreme Typhoon or storm induced waves, man has constructed these of temporary or more permanent nature, but they caused problems of other erosions from the secondary effect of them and a bad influence on the seascape. In considering the energy available to accelerate sediment transport and erosion in the surf zone, where the waves are broken, and offshore beyond the breaker line, the wave height and the wave period should be taken account. Hence, we tried to present an applicability of the submerged artificial Bio-reefs analyzing waves by a numerical model such that they could reduce the wave power without the secondary effect and restoration of marine ecologies. A new technique of beach preservation is by artificial reefs with artificial and/or natural kelps or sea plants. By engineering the geometry of the nearshore reef, the wave attenuation ability of the feature can be optimized Higher, wider and longer reefs provide the greatest barrier against wave energy but material volumes, navigation hazards, placement methods and other factors require engineering considerations for the overall design of the nearshore reefs.

  • PDF

Evaluating Economic Value of Heat Wave Watch/Warning Information in Seoul and Busan in 2016: Focused on a Cost of Heat Wave Action Plan and Sample of Patients (2016년 서울과 부산지역 폭염특보 정보의 경제적 가치 평가 -폭염대책 비용과 환자 자료를 중심으로-)

  • Kim, In-Gyum;Lee, Seung-Wook;Kim, Hye-min;Lee, Dae-Geun
    • The Journal of the Korea Contents Association
    • /
    • v.20 no.5
    • /
    • pp.525-535
    • /
    • 2020
  • This study aims to evaluate the economic value of the heat wave watch/warning (HW/W) forecast provided by the KMA (Korea Meteorological Administration) for the public sector. Local govermenments of Korea currently use the HW/W forecasts as a major input variable to determine the preparative requisite level for reducing potential damage by extreme heat events. To assess the value of the HW/W, which is not a marketable commodity, a decision-making model taking into account the cost and loss was established. The 'cost' variable was defined as the heat wave countermeasures budget for Seoul and Busan in 2016, and the 'loss' variable was set as the amount of health insurance claims for those 65 and older obtained from the Health Insurance Review and Assessment Service. Using this model, the value of the HW/W in 2016 was calculated as KRW 4,133M and KRW1,090M for Seoul and Busan, respectively. In addition, if the KMA reduces the False Alarm of the HW/W by a single instance, the value will be increased by KRW 76.6M and KRW 16.8M for the two cities. The results of this study are useful in quantitatively estimation of the value of the HW/W forthe public sector.

Development of a Flood Disaster Evacuation Map Using Two-dimensional Flood Analysis and BIM Technology (2차원 침수해석과 BIM 기술을 활용한 홍수재난 대피지도 작성)

  • Jeong, Changsam
    • Journal of Korean Society of Disaster and Security
    • /
    • v.13 no.2
    • /
    • pp.53-63
    • /
    • 2020
  • In this study, the two-dimensional flow analysis model Hydro_AS-2D model was used to simulate the situation of flooding in Seongsangu and Uichang-gu in Changwon in the event of rising sea levels and extreme flooding, and the results were expressed on three-dimensional topography and the optimal evacuation path was derived using BIM technology. Climate change significantly affects two factors in terms of flood damage: rising sea levels and increasing extreme rainfall ideas. The rise in sea level itself can not only have the effect of flooding coastal areas and causing flooding, but it also raises the base flood level of the stream, causing the rise of the flood level throughout the stream. In this study, the rise of sea level by climate change, the rise of sea level by storm tidal wave by typhoon, and the extreme rainfall by typhoon were set as simulated conditions. The three-dimensional spatial information of the entire basin was constructed using the information of topographical space in Changwon and the information of the river crossing in the basic plan for river refurbishment. Using BIM technology, the target area was constructed as a three-dimensional urban information model that had information such as the building's height and location of the shelter on top of the three-dimensional topographical information, and the results of the numerical model were expressed on this model and used for analysis for evacuation planning. In the event of flooding, the escape route is determined by an algorithm that sets the path to the shelter according to changes in the inundation range over time, and the set path is expressed on intuitive three-dimensional spatial information and provided to the user.

Study on the Characteristics of Spatial Relationship between Heat Concentration and Heat-deepening Factors Using MODIS Based Heat Distribution Map (MODIS 기반의 열 분포도를 활용한 열 집중지역과 폭염 심화요인 간의 공간관계 특성 연구)

  • Kim, Boeun;Lee, Mihee;Lee, Dalgeun;Kim, Jinyoung
    • Korean Journal of Remote Sensing
    • /
    • v.36 no.5_4
    • /
    • pp.1153-1166
    • /
    • 2020
  • The purpose of this study was to analyze the spatial correlation between the heat distribution map of the satellite imaging base and the factors that deepen the heat wave, and to explore the heat concentration area and the space where the risk of future heat wave may increase. The global Moran's I of population, land use, and buildings, which are the causes of heat concentration and heat wave deepening, is found to be high and concentrated in specific spaces. According to the analysis results of local Moran's I, heat concentration areas appeared mainly in large cities such as metropolitan and metropolitan areas, and forests were dominant in areas with relatively low temperatures. Areas with high population growth rates were distributed in the surrounding areas of Gyeonggi-do, Daejeon, and Busan, and the use of land and buildings were concentrated in the metropolitan area and large cities. Analysis by Bivarate Local Moran's I has shown that population growth is high in heat-intensive areas, and that artificial and urban building environments and land use take place. The results of this research can lead to the ranking of heat concentration areas and explore areas with environments where heat concentration is concentrated nationwide and deepens it, so ultimately it is considered to contribute to the establishment of preemptive measures to deal with extreme heat.

Analysis of Harbor Responses due to the Dredging Work at Waterway and Mooring Basin in Busan New Port (부산 신항만에서 수로 및 박지 준설에 따른 항만정온도의 변화 분석)

  • Lee Joong-Woo;Lee Hak-Seung;Lee Hoon;Yang Sang-Yong
    • Journal of Navigation and Port Research
    • /
    • v.30 no.1 s.107
    • /
    • pp.97-104
    • /
    • 2006
  • Recently the first stage qf construction for Busan new port emerged over the sea surface at the north container terminal site. With this, there are lot of discussions and debates on increasing the water depth at the approaching channel and mooring basin from the existing 15m to 18m by dredging work in order to be able to serve 12,000TEU containership, and at the same time, correction to the reclamation plan of hinterland at the part of Undong Bay qf the new port site. Since the attack of typhoon 'Maemi' in 2003, it is expected that the design wave parameters for coastal and harbor structures in this area would be somewhat changed and so the extreme wave condition at each terminal and tranquility of berthing area does, and therefore, it is necessary to analyze the tranquility at each berth Hence in this study, we constructed a wave model for these conditions and performed simulation together with the circulation model simulation, compared with the field data collected The result showed the increase of the harbor response throughout the basin but not severe condition However, a certain location needs to be prepared for the rough sea condition when a severe typhoon hit the site.

Analysis of Harbor Responses due to the Dredging Work at Waterway and Mooring Basin in Busan New Port (부산 신항만에서 수로 및 박지 준설에 따른 항만정온도의 변화 분석)

  • Lee Joong-Woo;Lee Hak-Seung;Lee Hoon;Yang Sang-Yong
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2005.10a
    • /
    • pp.117-124
    • /
    • 2005
  • Recently the first stage of construction for Busan new port emerged over the sea surface at the north container terminal site. With this, there are lot of discussions and debates on increasing the water depth at the approaching channel and mooring basin from the existing 15m to 18m by dredging work in order to be able to serve 12,000TEU containership, and at the same time, correction to the reclamation plan of hinterland at the part of Undong Bay of the new port site. Since the attack of typhoon 'Maemi' in 2003, it is expected that the design wave parameters for coastal and harbor structures in this area would be somewhat changed and so the extreme wave condition at each terminal and tranquility of berthing area does, and therefore, it is necessary to analyze the tranquility at each berth. Hence in this study, we constructed a wave model for these conditions and performed simulation together with the circulation model simulation, compared with the field data collected. The result showed the increase of the harbor response throughout the basin but not severe condition. However, a certain location needs to be prepared for the rough sea condition when a severe typhoon hit the site.

  • PDF

Topographic Variability during Typhoon Events in Udo Rhodoliths Beach, Jeju Island, South Korea (제주 우도 홍조단괴해빈의 태풍 시기 지형변화)

  • Yoon, Woo-Seok;Yoon, Seok-Hoon;Moon, Jae-Hong;Hong, Ji-Seok
    • Ocean and Polar Research
    • /
    • v.43 no.4
    • /
    • pp.307-320
    • /
    • 2021
  • Udo Rhodolith Beach is a small-scale, mixed sand-and-gravel beach embayed on the N-S trending rocky coast of Udo, Jeju Island, South Korea. This study analyzes the short-term topographic changes of the beach during the extreme storm conditions of four typhoons from 2016 to 2020: Chaba (2016), Soulik (2018), Lingling (2019), and Maysak (2020). The analysis uses the topographic data of terrestrial LiDAR scanning and drone photogrammetry, aided by weather and oceanographic datasets of wind, wave, current and tide. The analysis suggests two contrasting features of alongshore topographic change depending on the typhoon pathway, although the intensity and duration of the storm conditions differed in each case. During the Soulik and Lingling events, which moved northward following the western sea of the Jeju Island, the northern part of the beach accreted while the southern part eroded. In contrast, the Chaba and Maysak events passed over the eastern sea of Jeju Island. The central part of the beach was then significantly eroded while sediments accumulated mainly at the northern and southern ends of the beach. Based on the wave and current measurements in the nearshore zone and computer simulations of the wave field, it was inferred that the observed topographic change of the beach after the storm events is related to the directions of the wind-driven current and wave propagation in the nearshore zone. The dominant direction of water movement was southeastward and northeastward when the typhoon pathway lay to the east or west of Jeju Island, respectively. As these enhanced waves and currents approached obliquely to the N-S trending coastline, the beach sediments were reworked and transported southward or northward mainly by longshore currents, which likely acts as a major control mechanism regarding alongshore topographic change with respect to Udo Rhodolith Beach. In contrast to the topographic change, the subaerial volume of the beach overall increased after all storms except for Maysak. The volume increase was attributed to the enhanced transport of onshore sediment under the combined effect of storm-induced long periodic waves and a strong residual component of the near-bottom current. In the Maysak event, the raised sea level during the spring tide probably enhanced the backshore erosion by storm waves, eventually causing sediment loss to the inland area.