• Title/Summary/Keyword: Extreme load

Search Result 316, Processing Time 0.025 seconds

A case study on the vibration by fluid induced instability at large steam turbine-generator (대형 터빈-발전기에서의 유체 불안정진동 해소사례)

  • Han, Seung-Woo;Noh, Chel-Woo;Kim, In-Chul;Joo, In-Gouk;Kim, Myong-Shik
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2007.11a
    • /
    • pp.1066-1071
    • /
    • 2007
  • This case study refers to turbine-generator with retrofitted turbine rotor. Vibration problem occurring after the retrofit was mainly due to high vibration from exciter side. However, repeated test run and operation during scheduled maintenance caused high vibration from generator bearing, and post-overhaul test run before turbine vibration correction caused oil whip on the bearing. This case study shows how to analyze vibration condition of high turbine generator vibration detected during the post-overhaul test run and vibration condition of offline and online data to reflect it on establishing maintenance schedule and overhaul correction procedure. Vibration data could be acquired during steady load operation or even with varying speed and load. Each data is important for machinery condition evaluation. This case study shows that the vibration data during extreme condition is the key factor in analysis, which helps to find the machinery problem.

  • PDF

Probabilistic Analysis of Lifetime Extreme Live Loads of Multi-Story Columns (고층기둥 축하중의 사용기간 최대값에 대한 확률론적 분석)

  • 김상효;박흥석
    • Computational Structural Engineering
    • /
    • v.5 no.3
    • /
    • pp.113-118
    • /
    • 1992
  • The live loads acting on structures are generally computed in terms of equivalent uniformly distributed loads for the simplicity in design process. The loads, therefore, tend to decrease with increasing influence area in both load intensity and variance. Since multi-story column loads result from accumulation of loadings action on several different floors, its influence area becomes wider and lifetime maximum decreases. In the design codes proposing the design loads according to types of structural members(i.e., slabs, beams, columns), rather than the change of influence area, some proper reduction factors are given for columns which support more than one floor. Using the live load models developed for columns supporting single floor, in this study, the probabilistic characteristics of multi-story column loads are analyzed. In addition reduction factors given for multistory columns in current practice are calibrated.

  • PDF

The Development of Miniature Propelling System for Electric Brake at Extreme Low Speed (극 저속시 전기제동을 위한 축소 모형 추진시스템 개발)

  • Kim, Young-Choon;Cho, Moon-Taek;Joo, Hae-Jong
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.14 no.2
    • /
    • pp.822-827
    • /
    • 2013
  • In this paper, how to stop a moment to experiment with stop function, electric brake type scale model propulsion system is designed and fabricated by control of the braking torque is proposed. Scale model system for motor-driven, inertial load, the structure of the load for the motor and the inverter system was constructed with two sets of converters, the actual range of the rotational speed of the vehicle DDM experiments to be able to. In Additional, observer to estimate the rotor position and speed of using resolver, and the pole at low speed, speed detection methods have been developed. As a result of this study, first, stop the moment Second, the reduction of braking torque, and how to initiate the operation of the air brake blending by using the braking, improve braking methods that only use the electric brake to stop brought.

A 3-DOF forced vibration system for time-domain aeroelastic parameter identification

  • Sauder, Heather Scot;Sarkar, Partha P.
    • Wind and Structures
    • /
    • v.24 no.5
    • /
    • pp.481-500
    • /
    • 2017
  • A novel three-degree-of-freedom (DOF) forced vibration system has been developed for identification of aeroelastic (self-excited) load parameters used in time-domain response analysis of wind-excited flexible structures. This system is capable of forcing sinusoidal motions on a section model of a structure that is used in wind tunnel aeroelastic studies along all three degrees of freedom - along-wind, cross-wind, and torsional - simultaneously or in any combination thereof. It utilizes three linear actuators to force vibrations at a consistent frequency but varying amplitudes between the three. This system was designed to identify all the parameters, namely, aeroelastic- damping and stiffness that appear in self-excited (motion-dependent) load formulation either in time-domain (rational functions) or frequency-domain (flutter derivatives). Relatively large displacements (at low frequencies) can be generated by the system, if required. Results from three experiments, airfoil, streamlined bridge deck and a bluff-shaped bridge deck, are presented to demonstrate the functionality and robustness of the system and its applicability to multiple cross-section types. The system will allow routine identification of aeroelastic parameters through wind tunnel tests that can be used to predict response of flexible structures in extreme and transient wind conditions.

Finite element simulation for steel tubular members strengthened with FRP under compression

  • El-Kholy, Ahmed M.;Mourad, Sherif A.;Shaheen, Ayman A.;Mohamed, Yomna A.
    • Structural Engineering and Mechanics
    • /
    • v.72 no.5
    • /
    • pp.569-583
    • /
    • 2019
  • Tubular steel sections are widespread all over the world because of their strength and aesthetic appearance. Tubular steel members may exhibit local buckling such as elephant foot or overall buckling under extreme compression load. Recently, external bonding of fiber reinforced polymers (FRP) sheets for strengthening these members has been explored through experimental research. This paper presents three-dimensional nonlinear finite element analysis (FEA) to investigate the structural behavior of strengthening tubular steel members with FRP against local and overall buckling phenomena. Out-of-roundness and out-of-straightness imperfections were introduced to the numerical models to simulate the elephant foot and overall buckling, respectively. The nonlinear analysis preferences such as the integration scheme of the shell elements, the algorithm for solution of nonlinear equations, the loading procedure, the bisection limits for the load increments, and the convergence criteria were set, appropriately enough, to successfully track the sophisticated buckling deformations. The agreement between the results of both the presented FEA and the experimental research was evident. The FEA results demonstrated the power of the presented rigorous FEA in monitoring the plastic strain distribution and the buckling phenomena (initiation and propagation). Consequently, the buckling process was interpreted for each mode (elephant foot and overall) into three sequential stages. Furthermore, the influence of FRP layers on the nonlinear analysis preferences and the results was presented.

Stability and minimum bracing for stepped columns with semirigid connections: Classical elastic approach

  • Aristizabal-Ochoa, J. Dario
    • Structural Engineering and Mechanics
    • /
    • v.5 no.4
    • /
    • pp.415-431
    • /
    • 1997
  • Stability equations that evaluate the elastic critical axial load of stepped columns under extreme and intermediate concentrated axial loads in any type of construction with sidesway totally inhibited, partially inhibited and uninhibited are derived in a classical manner. These equations can be utilized in the stability analysis of framed structures (totally braced, partially braced, and unbraced) with stepped columns with rigid, semirigid, and simple connetions. The proposed column classification and the corresponding stability equations overcome the limitations of current methods which are based on a classification of braced and unbraced columns. The proposed stability equations include the effects of: 1) semirigid connections; 2) step variation in the column cross section at the point of application of the intermediate axial load; and 3) lateral and rotational restraints at the intermediate connection and at the column ends. The proposed method consists in determining the eigenvalue of a $2{\times}2$ matrix for a braced column at the two ends and of a $3{\times}3$ matrix for a partially braced or unbraced column. The stability analysis can be carried out directly with the help of a pocket calculator. The proposed method is general and can be extended to multi-stepped columns. Various examples are include to demonstrate the effectiveness of the proposed method and to verify that the calculated results are exact. Definite minimum bracing criteria for single stepped columns is also presented.

Minimum life-cycle cost design of ice-resistant offshore platforms

  • Li, Gang;Zhang, Da-Yong;Yue, Qian-Jin
    • Structural Engineering and Mechanics
    • /
    • v.31 no.1
    • /
    • pp.11-24
    • /
    • 2009
  • In China, the oil and natural gas resources of Bohai Bay are mainly marginal oil fields. It is necessary to build both ice-resistant and economical offshore platforms. However, risk is involved in the design, construction, utilization, maintenance of offshore platforms as uncertain events may occur within the life-cycle of a platform under the extreme ice load. In this study, the optimum design model of the expected life-cycle cost for ice-resistant platforms based on cost-effectiveness criterion is proposed. Multiple performance demands of the structure, facilities and crew members, associated with the failure assessment criteria and evaluation functions of costs of construction, consequences of structural failure modes including damage, revenue loss, death and injury as well as discounting cost over time are considered. An efficient approximate method of the global reliability analysis for the offshore platforms is provided, which converts the implicit nonlinear performance function in the conventional reliability analysis to linear explicit one. The proposed life-cycle optimum design formula are applied to a typical ice-resistant platform in Bohai Bay, and the results demonstrate that the life-cycle cost-effective optimum design model is more rational compared to the conventional design.

Evaluating damage scale model of concrete materials using test data

  • Mohammed, Tesfaye A.;Parvin, Azadeh
    • Advances in concrete construction
    • /
    • v.1 no.4
    • /
    • pp.289-304
    • /
    • 2013
  • A reliable concrete constitutive material model is critical for an accurate numerical analysis simulation of reinforced concrete structures under extreme dynamic loadings including impact or blast. However, the formulation of concrete material model is challenging and entails numerous input parameters that must be obtained through experimentation. This paper presents a damage scale analytical model to characterize concrete material for its pre- and post-peak behavior. To formulate the damage scale model, statistical regression and finite element analysis models were developed leveraging twenty existing experimental data sets on concrete compressive strength. Subsequently, the proposed damage scale analytical model was implemented in the finite element analysis simulation of a reinforced concrete pier subjected to vehicle impact loading and the response were compared to available field test data to validate its accuracy. Field test and FEA results were in good agreement. The proposed analytical model was able to reliably predict the concrete behavior including its post-peak softening in the descending branch of the stress-strain curve. The proposed model also resulted in drastic reduction of number of input parameters required for LS-DYNA concrete material models.

Evaluation of wind loads and the potential of Turkey's south west region by using log-normal and gamma distributions

  • Ozkan, Ramazan;Sen, Faruk;Balli, Serkan
    • Wind and Structures
    • /
    • v.31 no.4
    • /
    • pp.299-309
    • /
    • 2020
  • In this study, wind data such as speeds, loads and potential of Muğla which is located in the southwest of Turkey were statistically analyzed. The wind data which consists of hourly wind speed between 2010 and 2013 years, was measured at the 10-meters height in four different ground stations (Datça, Fethiye, Marmaris, Köyceğiz). These stations are operated by The Turkish State Meteorological Service (T.S.M.S). Furthermore, wind data was analyzed by using Log-Normal and Gamma distributions, since these distributions fit better than Weibull, Normal, Exponential and Logistic distributions. Root Mean Squared Error (RMSE) and the coefficients of the goodness of fit (R2) were also determined by using statistical analysis. According to the results, extreme wind speed in the research area was 33 m/s at the Datça station. The effective wind load at this speed is 0.68 kN/㎡. The highest mean power densities for Datça, Fethiye, Marmaris and Köyceğiz were found to be 46.2, 1.6, 6.5 and 2.2 W/㎡, respectively. Also, although Log-normal distribution exhibited a good performance i.e., lower AD (Anderson - Darling statistic (AD) values) values, Gamma distribution was found more suitable in the estimation of wind speed and power of the region.

Effect of Lubricant Additives on the Surface Fatigue Performance of Gear Oils

  • Hong, Hyun-Soo;Huston, Michael E.;Stadnyk, Nicholas M.
    • Tribology and Lubricants
    • /
    • v.11 no.5
    • /
    • pp.136-143
    • /
    • 1995
  • The effect of additive chemistry on the serface fatigue of gears was investigated using the FZG gear tester and fluids based on an API GL-5 grade oil. Surface fatigue lives were determined as a function of load and additive chemistry. At 1.52 GPa, the removal of the primary extreme pressure additive (EP) from the fully formulated gear oil decreased the fatigue life of gears slightly (4%), however, the removal of the primary antiwear additive (AW) decreased the fatigue life of gears significantly (83%). At 1.86 GPa, the removal of the EP additive from the fully formulated gear oil decresed the gear fatigue life 27%, however, the removal of the primary AW additive decreased the fatigue life of gears significantly (75%). Micropitting was the dominant surface morphology in the dedendum of gears tested With two oils at load stage: one using the complete additive package, and a second where the EP additive has been removed. However, spalling is the primary failure mode of gears tested without an AW additive independent of whether an EP agent was present. Surface analysis of pinion gears showed the formation of a mixed phosphate/phosphite-oxide layer on the surface of gears tested with fluids containing an AW. Formation of this layer seems to be key to long fatigue life.