• Title/Summary/Keyword: Extreme distribution function

Search Result 110, Processing Time 0.026 seconds

Distribution of Irregular Wave Height in Finite Water Depth (유한수심에서의 불규칙파의 파고 분포)

  • 안경모;마이클오찌
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.6 no.1
    • /
    • pp.88-93
    • /
    • 1994
  • This study is concerned with an analytic derivation of the probability density function applicable for wave heights in finite water depth using two different methods. As the first method of the study, a probability density function is developed by applying a series of polynomials which is orthogonal with respect to Rayleigh probability density function. The newly derived probability density function is compared with the histogram constructed from wave data obtained in finite water depth which indicate strong non-Gaussian characteristics. Although the probability density represents the histogram very well. it has negative density at large values. Although the magnitude of the negative density is small. it negates the use of the distribution function fer estimating extreme values. As the second method of the study, a probability density function of wave height is developed by applying the maximum entropy method. The probability density function thusly derived agrees very well with the wave height distribution in shallow water, and appears to be useful in estimating extreme values and statistical properties of wave heights in finite water depth. However, a functional relationship between the probability distribution and the non-Gaussian characteristics of the data cannot be obtained by applying the maximum entropy method.

  • PDF

On Distribution of Order Statistics from Kumaraswamy Distribution

  • Garg, Mridula
    • Kyungpook Mathematical Journal
    • /
    • v.48 no.3
    • /
    • pp.411-417
    • /
    • 2008
  • In the present paper we derive the distribution of single order statistics, joint distribution of two order statistics and the distribution of product and quotient of two order statistics when the independent random variables are from continuous Kumaraswamy distribution. In particular the distribution of product and quotient of extreme order statistics and consecutive order statistics have also been obtained. The method used is based on Mellin transform and its inverse.

Separation Effect Analysis for Rainfall Data (강우자료의 분리효과)

  • 김양수;허준행
    • Water for future
    • /
    • v.26 no.4
    • /
    • pp.73-83
    • /
    • 1993
  • This study focuses on the separation effect analysis of rainfall data for 2-parameter log-normal, 3-parameter log-normal, type-extreme value, 2-parameter gamma, 3-parameter gamma, log-Pearson type-III, and general extreme value distribution functions. Difference in the relationship between the mean and standard deviation of skewness for historical data and relations derived from 7 distribution functions are analyzed suing the Monte Carlo experiment. The results show that rainfall data has the separation effect for 6 distribution functions except 3-parameter gamma distribution function.

  • PDF

Asymptotic Properties of Upper Spacings

  • Yun, Seok-Hoon
    • Journal of the Korean Statistical Society
    • /
    • v.26 no.3
    • /
    • pp.289-297
    • /
    • 1997
  • It is well known that the spacings, the differences of two successive order statistics, in a random sample of size n from a distribution function F are independent and exponentially distributed if F is itself the exponential distribution. In this paper we obtain an asymptotically similar result on a fixed number of upper spacings as n .to. .infty. for a general F under the assumption that F is in the domain of attraction of some extreme value distribution. For a heavy or short tailed F, appropriate log transformations of the sample should be proceded to get the result. As a by-product, we also get that each upper spacing diverges in probability to .infty. and converges in probability to 0 as n .to. .infty. for a heavy and short tailed F, respectively, which is fully expected.

  • PDF

Applications of the Type III Asymptotic Distribution for Extreme Sea Level Computations (극한 파고 계산에 있어서 Type III 분포의 응용)

  • T.I. Lee;S.H. Kwon;Y.K. Chon
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.29 no.2
    • /
    • pp.1-7
    • /
    • 1992
  • The computational methods of extreme sea level are developed in this study. Based on type III asymptotic distribution, non-linear multiple regression method, skewness method and maximum likelihood method are used to evaluate the parameters of the distribution. The difference between real data and evaluated distribution function is fitted to get more desirable accuracy by employing polynominals. The numerical examples are given in the last section in order to illustrate the application of the present scheme.

  • PDF

Statistical properties of the maximum elastoplastic story drift of steel frames subjected to earthquake load

  • Li, Gang
    • Steel and Composite Structures
    • /
    • v.3 no.3
    • /
    • pp.185-198
    • /
    • 2003
  • The concept of performance based seismic design has been gradually accepted by the earthquake engineering profession recently, in which the cost-effectiveness criterion is one of the most important principles and more attention is paid to the structural performance at the inelastic stage. Since there are many uncertainties in seismic design, reliability analysis is a major task in performance based seismic design. However, structural reliability analysis may be very costly and time consuming because the limit state function is usually a highly nonlinear implicit function with respect to the basic design variables, especially for the complex large-scale structures for dynamic and nonlinear analysis. Understanding statistical properties of the structural inelastic deformation, which is the aim of the present paper, is helpful to develop an efficient approximate approach of reliability analysis. The present paper studies the statistical properties of the maximum elastoplastic story drift of steel frames subjected to earthquake load. The randomness of earthquake load, dead load, live load, steel elastic modulus, yield strength and structural member dimensions are considered. Possible probability distributions for the maximum story are evaluated using K-S test. The results show that the choice of the probability distribution for the maximum elastoplastic story drift of steel frames is related to the mean value of the maximum elastoplastic story drift. When the mean drift is small (less than 0.3%), an extreme value type I distribution is the best choice. However, for large drifts (more than 0.35%), an extreme value type II distribution is best.

Distribution of the Estimator for Peak of a Regression Function Using the Concomitants of Extreme Oder Statistics

  • Kim, S.H;Kim, T.S.
    • Communications for Statistical Applications and Methods
    • /
    • v.5 no.3
    • /
    • pp.855-868
    • /
    • 1998
  • For a random sample of size n from general linear model, $Y_i= heta(X_i)+varepsilon_i,;let Y_{in}$ denote the ith oder statistics of the Y sample values. The X-value associated with $Y_{in}$ is denoted by $X_{[in]}$ and is called the concomitant of ith order statistics. The estimator of the location of a maximum of a regression function, $ heta$($\chi$), was proposed by (equation omitted) and was found the convergence rate of it under certain weak assumptions on $ heta$. We will discuss the asymptotic distributions of both $ heta(X_{〔n-r+1〕}$) and (equation omitted) when r is fixed as nolongrightarrow$\infty$(i.e. extreme case) on the basis of the theorem of the concomitants of order statistics. And the will investigate the asymptotic behavior of Max{$\theta$( $X_{〔n-r+1:n〕/}$ ), . , $\theta$( $X_{〔n:n〕}$)}as an estimator for the peak of a regression function.

  • PDF

Review of Classification Models for Reliability Distributions from the Perspective of Practical Implementation (실무적 적용 관점에서 신뢰성 분포의 유형화 모형의 고찰)

  • Choi, Sung-Woon
    • Journal of the Korea Safety Management & Science
    • /
    • v.13 no.1
    • /
    • pp.195-202
    • /
    • 2011
  • The study interprets each of three classification models based on Bath-Tub Failure Rate (BTFR), Extreme Value Distribution (EVD) and Conjugate Bayesian Distribution (CBD). The classification model based on BTFR is analyzed by three failure patterns of decreasing, constant, or increasing which utilize systematic management strategies for reliability of time. Distribution model based on BTFR is identified using individual factors for each of three corresponding cases. First, in case of using shape parameter, the distribution based on BTFR is analyzed with a factor of component or part number. In case of using scale parameter, the distribution model based on BTFR is analyzed with a factor of time precision. Meanwhile, in case of using location parameter, the distribution model based on BTFR is analyzed with a factor of guarantee time. The classification model based on EVD is assorted into long-tailed distribution, medium-tailed distribution, and short-tailed distribution by the length of right-tail in distribution, and depended on asymptotic reliability property which signifies skewness and kurtosis of distribution curve. Furthermore, the classification model based on CBD is relied upon conjugate distribution relations between prior function, likelihood function and posterior function for dimension reduction and easy tractability under the occasion of Bayesian posterior updating.

IKPCA-ELM-based Intrusion Detection Method

  • Wang, Hui;Wang, Chengjie;Shen, Zihao;Lin, Dengwei
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.14 no.7
    • /
    • pp.3076-3092
    • /
    • 2020
  • An IKPCA-ELM-based intrusion detection method is developed to address the problem of the low accuracy and slow speed of intrusion detection caused by redundancies and high dimensions of data in the network. First, in order to reduce the effects of uneven sample distribution and sample attribute differences on the extraction of KPCA features, the sample attribute mean and mean square error are introduced into the Gaussian radial basis function and polynomial kernel function respectively, and the two improved kernel functions are combined to construct a hybrid kernel function. Second, an improved particle swarm optimization (IPSO) algorithm is proposed to determine the optimal hybrid kernel function for improved kernel principal component analysis (IKPCA). Finally, IKPCA is conducted to complete feature extraction, and an extreme learning machine (ELM) is applied to classify common attack type detection. The experimental results demonstrate the effectiveness of the constructed hybrid kernel function. Compared with other intrusion detection methods, IKPCA-ELM not only ensures high accuracy rates, but also reduces the detection time and false alarm rate, especially reducing the false alarm rate of small sample attacks.

Saddlepoint Approximation to the Distribution of General Statistic (일반적 통계량의 분포함수에 대한 안부점 근사)

  • 나종화
    • The Korean Journal of Applied Statistics
    • /
    • v.11 no.2
    • /
    • pp.287-302
    • /
    • 1998
  • Saddlepoint approximation to the distribution function of sample mean(Daniels, 1987) is extended to the case of general statistic in this paper. The suggested approximation methods are applied to derive the approximations to the distributions of some statistics, including sample valiance and studentized mean. Some comparisons with other methods show that the suggested approximations are very accurate for moderate or small sample sizes. Even in extreme tail the accuracies are also maintained.

  • PDF