• Title/Summary/Keyword: Extractive Summarization

검색결과 13건 처리시간 0.184초

Joint Hierarchical Semantic Clipping and Sentence Extraction for Document Summarization

  • Yan, Wanying;Guo, Junjun
    • Journal of Information Processing Systems
    • /
    • 제16권4호
    • /
    • pp.820-831
    • /
    • 2020
  • Extractive document summarization aims to select a few sentences while preserving its main information on a given document, but the current extractive methods do not consider the sentence-information repeat problem especially for news document summarization. In view of the importance and redundancy of news text information, in this paper, we propose a neural extractive summarization approach with joint sentence semantic clipping and selection, which can effectively solve the problem of news text summary sentence repetition. Specifically, a hierarchical selective encoding network is constructed for both sentence-level and document-level document representations, and data containing important information is extracted on news text; a sentence extractor strategy is then adopted for joint scoring and redundant information clipping. This way, our model strikes a balance between important information extraction and redundant information filtering. Experimental results on both CNN/Daily Mail dataset and Court Public Opinion News dataset we built are presented to show the effectiveness of our proposed approach in terms of ROUGE metrics, especially for redundant information filtering.

언어 분석 자질을 활용한 인공신경망 기반의 단일 문서 추출 요약 (Single Document Extractive Summarization Based on Deep Neural Networks Using Linguistic Analysis Features)

  • 이경호;이공주
    • 정보처리학회논문지:소프트웨어 및 데이터공학
    • /
    • 제8권8호
    • /
    • pp.343-348
    • /
    • 2019
  • 최근의 문서요약 시스템은 인공신경망을 이용한 End-to-End 방식이 주류를 이루고 있다. 이러한 시스템은 인간의 자질 추출 과정이 필요 없으며 데이터 중심의 접근 방법을 채택한다. 그러나 기존의 관련 연구들은 품사 정보, 개체명 정보, 단어의 빈도 정보와 같은 언어 분석 자질이 중요 문장을 선택하여 요약을 작성하는데 유용함을 보여왔다. 본 연구에서는 기존의 언어 분석 자질을 활용하여 인공신경망을 기반으로 한 단일 문서의 추출 요약 시스템을 제안한다. 언어 분석 자질의 유용성을 보이기 위해 자질을 사용하는 모델과 사용하지 않는 모델을 비교하였다. 실험 결과 자질을 사용하는 모델이 그렇지 않은 모델에 비해 약 0.5점의 Rouge-2 F1점수 향상을 보였다.

Text Summarization on Large-scale Vietnamese Datasets

  • Ti-Hon, Nguyen;Thanh-Nghi, Do
    • Journal of information and communication convergence engineering
    • /
    • 제20권4호
    • /
    • pp.309-316
    • /
    • 2022
  • This investigation is aimed at automatic text summarization on large-scale Vietnamese datasets. Vietnamese articles were collected from newspaper websites and plain text was extracted to build the dataset, that included 1,101,101 documents. Next, a new single-document extractive text summarization model was proposed to evaluate this dataset. In this summary model, the k-means algorithm is used to cluster the sentences of the input document using different text representations, such as BoW (bag-of-words), TF-IDF (term frequency - inverse document frequency), Word2Vec (Word-to-vector), Glove, and FastText. The summary algorithm then uses the trained k-means model to rank the candidate sentences and create a summary with the highest-ranked sentences. The empirical results of the F1-score achieved 51.91% ROUGE-1, 18.77% ROUGE-2 and 29.72% ROUGE-L, compared to 52.33% ROUGE-1, 16.17% ROUGE-2, and 33.09% ROUGE-L performed using a competitive abstractive model. The advantage of the proposed model is that it can perform well with O(n,k,p) = O(n(k+2/p)) + O(nlog2n) + O(np) + O(nk2) + O(k) time complexity.

신문기사와 소셜 미디어를 활용한 한국어 문서요약 데이터 구축 (Building a Korean Text Summarization Dataset Using News Articles of Social Media)

  • 이경호;박요한;이공주
    • 정보처리학회논문지:소프트웨어 및 데이터공학
    • /
    • 제9권8호
    • /
    • pp.251-258
    • /
    • 2020
  • 문서 요약을 위한 학습 데이터는 문서와 그 요약으로 구성된다. 기존의 문서 요약 데이터는 사람이 수동으로 요약을 작성하였기 때문에 대량의 데이터 확보가 어려웠다. 그렇기 때문에 온라인으로 쉽게 수집 가능하며 문서의 품질이 우수한 인터넷 신문기사가 문서 요약 연구에 많이 활용되어 왔다. 본 연구에서는 언론사가 소셜 미디어에 게시한 설명글과 제목, 부제를 본문의 요약으로 사용하여 한국어 문서 요약 데이터를 구성하는 것을 제안한다. 약 425,000개의 신문기사와 그 요약데이터를 구축할 수 있었다. 구성한 데이터의 유용성을 보이기 위해 추출 요약 시스템을 구현하였다. 본 연구에서 구축한 데이터로 학습한 교사 학습 모델과 비교사 학습 모델의 성능을 비교하였다. 실험 결과 제안한 데이터로 학습한 모델이 비교사 학습 알고리즘에 비해 더 높은 ROUGE 점수를 보였다.

EyeBERT: 아이트래킹 기반의 휴먼 리딩을 반영한 추출 요약 기법 (EyeBERT: Eye tracking based Human Reading for Extractive Text Summarization)

  • 이설화;허윤아;임희석
    • 한국정보과학회 언어공학연구회:학술대회논문집(한글 및 한국어 정보처리)
    • /
    • 한국정보과학회언어공학연구회 2019년도 제31회 한글 및 한국어 정보처리 학술대회
    • /
    • pp.522-526
    • /
    • 2019
  • 추출 요약(Extractive summarization)은 문서내에 주요한 요약정보가 되는 문장 또는 단어를 추출하여 요약을 생성하는 기법이다. 딥러닝 기법들이 많이 발전하면서 요약 기법에도 sequence-to-sequence와 같은 많은 시도들이 있었지만 대부분의 방법론들은 딥러닝의 모델 구조관점으로 접근하거나 요약에 있어서 단순히 입력 텍스트를 넣고 알고리즘이 처리하는 머신 리딩(Machine reading)관점으로 접근한다. 텍스트 요약 태스크 자체는 사람이 텍스트에 대한 정보 파악을 요약문을 통해 빠르게 하고 싶은 궁극적인 목표가 있으므로, 사람이 텍스트 요약에 필요한 인지처리과정을 반영할 필요가 있다. 결국, 기존의 머신 리딩보다는 휴먼 리딩(Human reading)에 관한 이해와 구조적 접근이 필요하다. 따라서 본 연구는 휴먼 리딩을 위한 인지처리과정을 위해 아이트래킹 데이터 기반의 새로운 추출 요약 모델을 제안한다.

  • PDF

Citation-based Article Summarization using a Combination of Lexical Text Similarities: Evaluation with Computational Linguistics Literature Summarization Datasets

  • Kang, In-Su
    • 한국컴퓨터정보학회논문지
    • /
    • 제24권7호
    • /
    • pp.31-37
    • /
    • 2019
  • Citation-based article summarization is to create a shortened text for an academic article, reflecting the content of citing sentences which contain other's thoughts about the target article to be summarized. To deal with the problem, this study introduces an extractive summarization method based on calculating a linear combination of various sentence salience scores, which represent the degrees to which a candidate sentence reflects the content of author's abstract text, reader's citing text, and the target article to be summarized. In the current study, salience scores are obtained by computing surface-level textual similarities. Experiments using CL-SciSumm datasets show that the proposed method parallels or outperforms the previous approaches in ROUGE evaluations against SciSumm-2017 human summaries and SciSumm-2016/2017 community summaries.

Automatic Single Document Text Summarization Using Key Concepts in Documents

  • Sarkar, Kamal
    • Journal of Information Processing Systems
    • /
    • 제9권4호
    • /
    • pp.602-620
    • /
    • 2013
  • Many previous research studies on extractive text summarization consider a subset of words in a document as keywords and use a sentence ranking function that ranks sentences based on their similarities with the list of extracted keywords. But the use of key concepts in automatic text summarization task has received less attention in literature on summarization. The proposed work uses key concepts identified from a document for creating a summary of the document. We view single-word or multi-word keyphrases of a document as the important concepts that a document elaborates on. Our work is based on the hypothesis that an extract is an elaboration of the important concepts to some permissible extent and it is controlled by the given summary length restriction. In other words, our method of text summarization chooses a subset of sentences from a document that maximizes the important concepts in the final summary. To allow diverse information in the summary, for each important concept, we select one sentence that is the best possible elaboration of the concept. Accordingly, the most important concept will contribute first to the summary, then to the second best concept, and so on. To prove the effectiveness of our proposed summarization method, we have compared it to some state-of-the art summarization systems and the results show that the proposed method outperforms the existing systems to which it is compared.

문서 요약 기법이 가짜 뉴스 탐지 모형에 미치는 영향에 관한 연구 (A Study on the Effect of the Document Summarization Technique on the Fake News Detection Model)

  • 심재승;원하람;안현철
    • 지능정보연구
    • /
    • 제25권3호
    • /
    • pp.201-220
    • /
    • 2019
  • 가짜뉴스가 전세계적 이슈로 부상한 최근 수년간 가짜뉴스 문제 해결을 위한 논의와 연구가 지속되고 있다. 특히 인공지능과 텍스트 분석을 이용한 자동화 가짜 뉴스 탐지에 대한 연구가 주목을 받고 있는데, 대부분 문서 분류 기법을 이용한 연구들이 주를 이루고 있는 가운데 문서 요약 기법은 지금까지 거의 활용되지 않았다. 그러나 최근 가짜뉴스 탐지 연구에 생성 요약 기법을 적용하여 성능 개선을 이끌어낸 사례가 해외에서 보고된 바 있으며, 추출 요약 기법 기반의 뉴스 자동 요약 서비스가 대중화된 현재, 요약된 뉴스 정보가 국내 가짜뉴스 탐지 모형의 성능 제고에 긍정적인 영향을 미치는지 확인해 볼 필요가 있다. 이에 본 연구에서는 국내 가짜뉴스에 요약 기법을 적용했을 때 정보 손실이 일어나는지, 혹은 정보가 그대로 보전되거나 혹은 잡음 제거를 통한 정보 획득 효과가 발생하는지 알아보기 위해 국내 뉴스 데이터에 추출 요약 기법을 적용하여 '본문 기반 가짜뉴스 탐지 모형'과 '요약문 기반 가짜뉴스 탐지 모형'을 구축하고, 다수의 기계학습 알고리즘을 적용하여 두 모형의 성능을 비교하는 실험을 수행하였다. 그 결과 BPN(Back Propagation Neural Network)과 SVM(Support Vector Machine)의 경우 큰 성능 차이가 발생하지 않았지만 DT(Decision Tree)의 경우 본문 기반 모델이, LR(Logistic Regression)의 경우 요약문 기반 모델이 다소 우세한 성능을 보였음을 확인하였다. 결과를 검증하는 과정에서 통계적으로 유의미한 수준으로는 요약문 기반 모델과 본문 기반 모델간의 차이가 확인되지는 않았지만, 요약을 적용하였을 경우 가짜뉴스 판별에 도움이 되는 핵심 정보는 최소한 보전되며 LR의 경우 성능 향상의 가능성이 있음을 확인하였다. 본 연구는 추출요약 기법을 국내 가짜뉴스 탐지 연구에 처음으로 적용해 본 도전적인 연구라는 점에서 의의가 있다. 하지만 한계점으로는 비교적 적은 데이터로 실험이 수행되었다는 점과 한 가지 문서요약기법만 사용되었다는 점을 제시할 수 있다. 향후 대규모의 데이터에서도 같은 맥락의 실험결과가 도출되는지 검증하고, 보다 다양한 문서요약기법을 적용해 봄으로써 요약 기법 간 차이를 규명하는 확장된 연구가 추후 수행되어야 할 것이다.

동적 연결 그래프를 이용한 자동 문서 요약 시스템 (A Document Summarization System Using Dynamic Connection Graph)

  • 송원문;김영진;김은주;김명원
    • 한국정보과학회논문지:소프트웨어및응용
    • /
    • 제36권1호
    • /
    • pp.62-69
    • /
    • 2009
  • 문서 요약은 쉽고 빠르게 문서의 내용을 파악할 수 있도록 방대한 내용을 가지는 다양한 형태의 문서로부터 핵심 내용만을 추출하거나 생성하여 제공하는 것을 목적으로 한다. 본 논문에서는 효율적 문서 요약을 위해 주어진 문서의 평균 문장 길이(핵심어 개수)를 고려하여 문장 간의 핵심어 유사도를 나타내는 연결 그래프를 생성하고 분석하여 요약을 생성하는 기법을 제안한다. 또한 이러한 기법을 이용하여 응용 프로그램 문서로부터 자동으로 요약을 생성하는 자동 문서 요약 시스템을 개발한다. 제안한 방법의 객관적인 요약 성능 측정을 위해 정확한 요약문이 실린 20개의 테스트 문서를 이용하여 생성된 요약에 대해 precision(정확률)과 recall(재현율), F-measure를 측정하였으며, 실험 결과를 통해 기존 기법에 비해 우수한 요약 성능을 보임을 증명하였다.

육하원칙 활성화도를 이용한 신문기사 자동추출요약 (Automatic Extractive Summarization of Newspaper Articles using Activation Degree of 5W1H)

  • 윤재민;정유진;이종혁
    • 한국정보과학회논문지:소프트웨어및응용
    • /
    • 제31권4호
    • /
    • pp.505-515
    • /
    • 2004
  • 육하원칙은 신문기사를 기술하는데 있어서 가장 기본적인 요소로서 기사 내용 파악에 핵심적인 역할을 수행한다. 본 논문은 이러한 육하원칙에 기반 하여 기술되는 신문기사의 특성에 주목하여, 육하원칙 활성화도를 이용한 신문기사 요약 방법론을 제안한다. 제안하는 방법론은 기존의 요약 기법 중 가장 우수한 방법으로 알려진 두문 기반 기법(lead-based method)과 제목 기반 기법(title-based method)의 문제점을 극복하기 위해, 제목과 두문의 정보를 결합시켜 충분한 어휘정보를 확보하도록 하였다. 특히 육하원칙 활성화도, 육하원칙 범주 개수, 문장 길이, 문장의 위치 둥과 같은 다양한 요소들을 문장 중요도 계산에 반영함으로써 보다 중요한 정보를 포함하면서도 가독성이 높은 문장들이 요약문으로 선택될 수 있도록 고려하였다. 제안된 방법론의 정확률은 74.7%로서 기존의 두문 기반 기법보다 우수한 성능을 보였으며, 신문기사를 자동 요약하는데 있어서 충분히 효과적으로 사용될 수 있는 방법론임을 실험을 통해 입증하였다.