• Title/Summary/Keyword: Extraction Feature Vector

Search Result 355, Processing Time 0.023 seconds

Recognition of Off-line Handwritten Numerals using KL Transformation (KL변환에 의한 오프라인 필기체 숫자인식)

  • 박중조;김경민;송명현
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2002.11a
    • /
    • pp.912-915
    • /
    • 2002
  • This paper presents off-line handwritten numeral recognition method by using Eigen-Vectors. In this method, numeral features are extracted statistically by using Eigen-Vectors through KL transform and input numeral is recognized in the feature space by the nearest-neighbor classifier. In our feature extraction method, basis vectors which express best the property of each numeral type within the extensive database of sample numeral images are calculated, and the numeral features are obtained by using this basis vectors. Through the experiments with the unconstrained handwritten numeral database of Concordia University, we have achieved a recognition rate of 96.2%.

  • PDF

Automated Lineament Extraction and Edge Linking Using Mask Processing and Hough Transform.

  • Choi, Sung-Won;Shin, Jin-Soo;Chi, Kwang-Hoon;So, Chil-Sup
    • Proceedings of the KSRS Conference
    • /
    • 1999.11a
    • /
    • pp.411-420
    • /
    • 1999
  • In geology, lineament features have been used to identify geological events, and many of scientists have been developed the algorithm that can be applied with the computer to recognize the lineaments. We choose several edge detection filter, line detection filters and Hough transform to detect an edge, line, and to vectorize the extracted lineament features, respectively. firstly the edge detection filter using a first-order derivative is applied to the original image In this step, rough lineament image is created Secondly, line detection filter is used to refine the previous image for further processing, where the wrong detected lines are, to some extents, excluded by using the variance of the pixel values that is composed of each line Thirdly, the thinning process is carried out to control the thickness of the line. At last, we use the Hough transform to convert the raster image to the vector one. A Landsat image is selected to extract lineament features. The result shows the lineament well regardless of directions. However, the degree of extraction of linear feature depends on the values of parameters and patterns of filters, therefore the development of new filter and the reduction of the number of parameter are required for the further study.

  • PDF

Gunnery Classification Method Using Profile Feature Extraction in Infrared Images (적외선 영상에서의 시계열 특징 추출을 이용한 Gunnery 분류 기법 연구)

  • Kim, Jae-Hyup;Cho, Tae-Wook;Chun, Seung-Woo;Lee, Jong-Min;Moon, Young-Shik
    • Journal of the Korea Society of Computer and Information
    • /
    • v.19 no.10
    • /
    • pp.43-53
    • /
    • 2014
  • Gunnery has been used to detect and classify artilleries. In this paper, we used electro-optical data to get the information of muzzle flash from the artilleries. Feature based approach was applied; we first defined features and sub-features. The number of sub-features was 38~40 generic sub-features, and 2 model-based sub-features. To classify multiclass data, we introduced tree structure with clustering the classes according to the similarity of them. SVM was used for each non-leaf nodes in the tree, as a sub-classifier. From the data, we extracted features and sub-features and classified them by the tree structure SVM classifier. The results showed that the performance of our classifier was good for our muzzle flash classification problem.

Forecasting of Short-term Wind Power Generation Based on SVR Using Characteristics of Wind Direction and Wind Speed (풍향과 풍속의 특징을 이용한 SVR기반 단기풍력발전량 예측)

  • Kim, Yeong-ju;Jeong, Min-a;Son, Nam-rye
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.42 no.5
    • /
    • pp.1085-1092
    • /
    • 2017
  • In this paper, we propose a wind forecasting method that reflects wind characteristics to improve the accuracy of wind power prediction. The proposed method consists of extracting wind characteristics and predicting power generation. The part that extracts the characteristics of the wind uses correlation analysis of power generation amount, wind direction and wind speed. Based on the correlation between the wind direction and the wind speed, the feature vector is extracted by clustering using the K-means method. In the prediction part, machine learning is performed using the SVR that generalizes the SVM so that an arbitrary real value can be predicted. Machine learning was compared with the proposed method which reflects the characteristics of wind and the conventional method which does not reflect wind characteristics. To verify the accuracy and feasibility of the proposed method, we used the data collected from three different locations of Jeju Island wind farm. Experimental results show that the error of the proposed method is better than that of general wind power generation.

Automatic Segmentation of Cellular Images for High-Throughput Genome-Wide RNA Interference Screening (고속 Genome-Wide RNA 간섭 스크리닝을 위한 세포영상의 자동 분할)

  • Han, Chan-Hee;Song, In-Hwan;Lee, Si-Woong
    • The Journal of the Korea Contents Association
    • /
    • v.10 no.4
    • /
    • pp.19-27
    • /
    • 2010
  • In recent years, high-throughput genome-wide RNA interference screening is emerging as an essential tool to biologists in understanding complex cellular processes. The manual analysis of the large number of images produced in each study spends much time and the labor. Hence, automatic cellular image analysis becomes an urgent need, where segmentation is the first and one of the most important steps. However, those factors such as the region overlapping, a variety of shapes, and non-uniform local characteristics of cellular images become obstacles to efficient cell segmentation. To avoid the problem, a new watershed-based cell segmentation algorithm using a localized segmentation method and a feature vector is proposed in this paper. Localized approach in segmentation resolves the problems caused by a variety of shapes and non-uniform characteristics. In addition, the poor performance of segmentation in overlapped regions can be improved by taking advantage of a feature vector whose component features complement each other. Simulation results show that the proposed method improves the segmentation performance compared to the method in Cellprofiler.

DCT-based Digital Dropout Detection using SVM (SVM을 이용한 DCT 기반의 디지털 드롭아웃 검출)

  • Song, Gihun;Ryu, Byungyong;Kim, Jaemyun;Ahn, Kiok;Chae, Oksam
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.51 no.7
    • /
    • pp.190-200
    • /
    • 2014
  • The video-based system of the broadcasters and the video-related institutions have shifted from analogical to digital in worldwide. This migration process can generate a defect, digital dropout, in the quality of the contents. Moreover, there are limited researches focused on these kind of defects and those related have limitations. For that reason, we are proposing a new method for feature extraction emphasizing in the peculiar block pattern of digital dropout based on discrete cosine transform (DCT). For classification of error block, we utilize support vector machine (SVM) which can manage feature vectors efficiently. Further, the proposed method overcome the limitation of the previous one using continuity of frame by frame. It is using only the information of a single frame and works better even in the presence of fast moving objects, without the necessity of specific model or parameter estimation. Therefore, this approach is capable of detecting digital dropout only with minimal complexity.

Implementation and Analysis of Power Analysis Attack Using Multi-Layer Perceptron Method (Multi-Layer Perceptron 기법을 이용한 전력 분석 공격 구현 및 분석)

  • Kwon, Hongpil;Bae, DaeHyeon;Ha, Jaecheol
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.29 no.5
    • /
    • pp.997-1006
    • /
    • 2019
  • To overcome the difficulties and inefficiencies of the existing power analysis attack, we try to extract the secret key embedded in a cryptographic device using attack model based on MLP(Multi-Layer Perceptron) method. The target of our proposed power analysis attack is the AES-128 encryption module implemented on an 8-bit processor XMEGA128. We use the divide-and-conquer method in bytes to recover the whole 16 bytes secret key. As a result, the MLP-based power analysis attack can extract the secret key with the accuracy of 89.51%. Additionally, this MLP model has the 94.51% accuracy when the pre-processing method on power traces is applied. Compared to the machine leaning-based model SVM(Support Vector Machine), we show that the MLP can be a outstanding method in power analysis attacks due to excellent ability for feature extraction.

A Study on Diagnosis of BLDC motor and New data-set Feature Extraction using Park's Vector Approach (Park's Vector Approach를 이용한 BLDC모터진단 방법과 새로운 데이터 셋 특징 추출 연구)

  • Goh, Yeong-Jin;Kim, Ji-Seon;Lee, Buhm;Kim, Kyoung-Min
    • Journal of IKEEE
    • /
    • v.26 no.1
    • /
    • pp.104-110
    • /
    • 2022
  • In this paper, we propose a new dataset for AI diagnosis and BLDC motor diagnosis in UAV. In the diagnosis of BLDC motor, PVA(Park's Vector Approach) is difficult to apply due to many ripples of frequency components. However, since the components of ripples are the third harmonics, we propose a method to utilize PVA as circle fitting by applying Savitzky-Golay filter which is excellent for the third harmonics. On the other hand, PVA, a technique to convert from three-phase to two-phase, is always based on the origin during the transformation process. This study demonstrates that the error of the origin and the measured center can be detected and diagnosed in the application process of Circle fitting, and that it can be used as a new data set of AI technology.

Decoding Brain Patterns for Colored and Grayscale Images using Multivariate Pattern Analysis

  • Zafar, Raheel;Malik, Muhammad Noman;Hayat, Huma;Malik, Aamir Saeed
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.14 no.4
    • /
    • pp.1543-1561
    • /
    • 2020
  • Taxonomy of human brain activity is a complicated rather challenging procedure. Due to its multifaceted aspects, including experiment design, stimuli selection and presentation of images other than feature extraction and selection techniques, foster its challenging nature. Although, researchers have focused various methods to create taxonomy of human brain activity, however use of multivariate pattern analysis (MVPA) for image recognition to catalog the human brain activities is scarce. Moreover, experiment design is a complex procedure and selection of image type, color and order is challenging too. Thus, this research bridge the gap by using MVPA to create taxonomy of human brain activity for different categories of images, both colored and gray scale. In this regard, experiment is conducted through EEG testing technique, with feature extraction, selection and classification approaches to collect data from prequalified criteria of 25 graduates of University Technology PETRONAS (UTP). These participants are shown both colored and gray scale images to record accuracy and reaction time. The results showed that colored images produces better end result in terms of accuracy and response time using wavelet transform, t-test and support vector machine. This research resulted that MVPA is a better approach for the analysis of EEG data as more useful information can be extracted from the brain using colored images. This research discusses a detail behavior of human brain based on the color and gray scale images for the specific and unique task. This research contributes to further improve the decoding of human brain with increased accuracy. Besides, such experiment settings can be implemented and contribute to other areas of medical, military, business, lie detection and many others.

Oil Price Forecasting Based on Machine Learning Techniques (기계학습기법에 기반한 국제 유가 예측 모델)

  • Park, Kang-Hee;Hou, Tianya;Shin, Hyun-Jung
    • Journal of Korean Institute of Industrial Engineers
    • /
    • v.37 no.1
    • /
    • pp.64-73
    • /
    • 2011
  • Oil price prediction is an important issue for the regulators of the government and the related industries. When employing the time series techniques for prediction, however, it becomes difficult and challenging since the behavior of the series of oil prices is dominated by quantitatively unexplained irregular external factors, e.g., supply- or demand-side shocks, political conflicts specific to events in the Middle East, and direct or indirect influences from other global economical indices, etc. Identifying and quantifying the relationship between oil price and those external factors may provide more relevant prediction than attempting to unclose the underlying structure of the series itself. Technically, this implies the prediction is to be based on the vectoral data on the degrees of the relationship rather than the series data. This paper proposes a novel method for time series prediction of using Semi-Supervised Learning that was originally designed only for the vector types of data. First, several time series of oil prices and other economical indices are transformed into the multiple dimensional vectors by the various types of technical indicators and the diverse combination of the indicator-specific hyper-parameters. Then, to avoid the curse of dimensionality and redundancy among the dimensions, the wellknown feature extraction techniques, PCA and NLPCA, are employed. With the extracted features, a timepointspecific similarity matrix of oil prices and other economical indices is built and finally, Semi-Supervised Learning generates one-timepoint-ahead prediction. The series of crude oil prices of West Texas Intermediate (WTI) was used to verify the proposed method, and the experiments showed promising results : 0.86 of the average AUC.