DOI QR코드

DOI QR Code

DCT-based Digital Dropout Detection using SVM

SVM을 이용한 DCT 기반의 디지털 드롭아웃 검출

  • Song, Gihun (Department of Computer Engineering, KyungHee University) ;
  • Ryu, Byungyong (Department of Computer Engineering, KyungHee University) ;
  • Kim, Jaemyun (Department of Computer Engineering, KyungHee University) ;
  • Ahn, Kiok (Department of Computer Engineering, KyungHee University) ;
  • Chae, Oksam (Department of Computer Engineering, KyungHee University)
  • Received : 2014.04.05
  • Accepted : 2014.06.23
  • Published : 2014.07.25

Abstract

The video-based system of the broadcasters and the video-related institutions have shifted from analogical to digital in worldwide. This migration process can generate a defect, digital dropout, in the quality of the contents. Moreover, there are limited researches focused on these kind of defects and those related have limitations. For that reason, we are proposing a new method for feature extraction emphasizing in the peculiar block pattern of digital dropout based on discrete cosine transform (DCT). For classification of error block, we utilize support vector machine (SVM) which can manage feature vectors efficiently. Further, the proposed method overcome the limitation of the previous one using continuity of frame by frame. It is using only the information of a single frame and works better even in the presence of fast moving objects, without the necessity of specific model or parameter estimation. Therefore, this approach is capable of detecting digital dropout only with minimal complexity.

전 세계적으로 방송사 및 영상 관련 기관들의 비디오 기반 시스템이 디지털로 전환되고 있다. 이송 과정에서 발생하는 디지털 드롭아웃은 콘텐츠의 질을 낮추게 만든다. 게다가 디지털 드롭아웃에 초점이 맞춰진 연구가 매우 미미하며 기존 방법들로 해결하기에는 한계점이 존재한다. 상기 이유로, 우리는 디지털 드롭아웃 블록이 가지는 독특한 패턴들의 주파수 특성을 강조할 수 있도록 이산 코사인 변환 (Discrete Cosine Transform) 계수를 기반으로 하는 새로운 특징표현 방법을 제안한다. 또한, 분류를 위해 특징 벡터를 효율적으로 활용할 수 있는 SVM 기반의 오류블록 분류방법을 활용한다. 더 나아가 이 방법은 기존 방법들의 프레임 간 연속성을 이용해 발생하는 문제점들을 극복하였다. 단독 프레임의 정보만을 이용함으로써 빠른 물체의 존재하에서도 동작이 가능하고, 특정 모델이나 추정이 필요하지 않아 최소의 복잡도 하에 오류 검출이 가능하다.

Keywords

References

  1. Gihun Song, Kiok Ahn, Jaemyun Kim, Myunghwan Ha, Moonsik Lee, Sungwoo Choi, Oksam Chae, "Enhanced Mask-Based Dropout Error Restoration Method in video using Adaptive Spatio-temporal Median Filter", IEEK Summer Conference of 2013, Jeju, Korea (2013)
  2. A. C. Kokaram, "On missing data treatment for degraded video and film archives: a survey and a new Bayesian approach," IEEE Trans. Image Processing, vol. 13, no. 3, pp. 397-415, Mar. 2004. https://doi.org/10.1109/TIP.2004.823815
  3. A. C. Kokaram, R. D. Morris, W. J. Fitzgerald, and P. J. W. Rayner, "Detection of missing data in image sequences," IEEE Trans. Image Processing, vol. 4, no. 11, pp. 1496-1508, Nov. 1995. https://doi.org/10.1109/83.469931
  4. A. C. Kokaram, Motion picture restoration: digital algorithms for artefact suppression in degraded motion picture film and video, 1st ed., Springer-Verlag, London, UK, 1998.
  5. Sun F., Han S.. Mosaic Defect Detection in Digital Video. Chinese Conference on Pattern Recognition, 2010.
  6. Kaprykowsky, H.; Mohan Liu; Ndjiki-Nya, P.; Restoration of digitized video sequences: An efficient drop-out detection and removal framework, 16th IEEE International Conference on Image Processing (ICIP), vol., no., pp.85-88, 7-10 Nov. 2009
  7. C. Cortes, and V. Vapnik, "Support-vector networks," Machine learning, vol. 20, no. 3, pp. 273-297, Sep. 1995.
  8. N. Dimitrova, Zhang, H.-J. Zhang, B. Shahraray, I. Sezan, T. Huang, and A. Zakhor, "Applications of video-content analysis and retrieval," IEEE MultiMedia, vol. 9, no. 3, pp. 42-55, Sep. 2002. https://doi.org/10.1109/MMUL.2002.1022858
  9. J. Fan, H. Luo, Y. Gao, and R. Jain, "Incorporating concept ontology for hierarchical video classification, annotation, and visualization," IEEE Trans. Multimedia, vol. 9, no. 5, pp. 939-957, Aug. 2007. https://doi.org/10.1109/TMM.2007.900143
  10. M.van der Schaar, D. S. Turaga, and R. Wong, "Classification-based system for cross-layer optimized wireless video transmission," IEEE Trans. Multimedia, vol. 8, no. 5, pp. 1082-1095, Oct. 2006. https://doi.org/10.1109/TMM.2006.879827
  11. JB. Kim, "Geometric-based error concealment for concealing transmission errors and improving visual quality," IEEE Trans. Circuits and Systems for Video Technology, vol. 16, no. 8, pp. 974-981, Aug. 2006. https://doi.org/10.1109/TCSVT.2006.877148
  12. M. Chen, Y. Zheng, and M. Wu, "Classification-based spatial error concealment for visual communications," EURASIP Journal on Applied Signal Processing, vol. 2006, pp. 257-273, Jan. 2006.
  13. S. Valente, C. Dufour, F. Groliere, and D. Snook, "An efficient error concealment implementation for MPEG-4 video streams," IEEE Trans. Consumer Electronics, vol. 47, no. 3, pp. 568-578, Aug. 2001. https://doi.org/10.1109/30.964147
  14. Z. Rongfu, Z. Yuanhua, and H. Xiaodong, "Content-adaptive spatial error concealment for video communication," IEEE Trans. Consumer Electronics, vol. 50, no. 1, pp. 335-341, Feb. 2004. https://doi.org/10.1109/TCE.2004.1277882
  15. Y. Xu, and Y. Zhou, "H. 264 video communication based refined error concealment schemes," IEEE Trans. Consumer Electronics, vol. 50, no. 4, pp. 1135-1141, Nov. 2004. https://doi.org/10.1109/TCE.2004.1362510
  16. L. Joyeux, S. Boukir, B. Besserer, and O. Buisson, "Reconstruction of degraded image sequences. Application to film restoration," Image and Vision Computing, vol. 19, no. 8, pp. 503-516, May 2001. https://doi.org/10.1016/S0262-8856(00)00091-3
  17. R. Storey, "Electronic detection and concealment of film dirt," SMPTE Journal, vol. 94, no. 6, pp. 642-647, June 1985. https://doi.org/10.5594/J07936
  18. A. C. Kokaram, R. Bornard, A. Rares, D. Sidorov, J.H. Chenot, L. Laborelli, and Biemond, J, "Digital restoration systems: Coping with reality," SMPTE motion imaging journal, vol.112, no. 7-8, pp. 225-231, July 2003. https://doi.org/10.5594/J12362
  19. E. D. Ferrandiere, Mathematical Morphology and Its Applications to Image and Signal Processing, Springer, US, 1996.
  20. R. D. Morris, "Image Sequence Restoration Using Gibbs Distributions," Ph.D. dissertation, Cambridge Univ., Cambridge, U.K., 1995.
  21. A. C. Kokaram, and S. J. Godsill, "MCMC for joint noise reduction and missing data treatment in degraded video," IEEE Trans. Signal Processing, vol. 50, no. 2, pp. 189-205, Feb. 2002. https://doi.org/10.1109/78.978375
  22. A. C. Kokaram, and S. J. Godsill, "Joint detection, interpolation, motion and parameter estimation for image sequences with missing data," Image Analysis and Processing, Volume 1311, pp 719-726 1997. https://doi.org/10.1007/3-540-63508-4_188
  23. B. Shen and I.K. Sethi, "Direct feature extraction from compressed images," in Proc. SPIE, Storage and Retrieval for Image and Video Databases IV, vol. 2670, pp. 404-414, 1996.
  24. H. Bae and S. Jung, "Image Retrieval using Texture Based on DCT," in Proc. IEEE International Conference on Information, Communications and Signal Processing, vol. 2, pp. 1065-1068, Sep. 1997.
  25. Y. Freund, and R. E. Schapire, "A desicion-theoretic generalization of on-line learning and an application to boosting," Proc. Second European Conference on Computational Learning Theory, pp. 23-37, March 1995.
  26. Canny, J., A computational Approach to Edge Detection, IEEE Trans. Pattern Analysis and Machine Intelligence, 8(6):679-698, 1986.