• 제목/요약/키워드: Extract fault

검색결과 103건 처리시간 0.028초

다중 패턴 인식 기법을 이용한 DWT 전력 스펙트럼 밀도 기반 기계 고장 진단 기법 (Machine Fault Diagnosis Method based on DWT Power Spectral Density using Multi Patten Recognition)

  • 강경원;이경민;칼렙;권기룡
    • 한국멀티미디어학회논문지
    • /
    • 제22권11호
    • /
    • pp.1233-1241
    • /
    • 2019
  • The goal of the sound-based mechanical fault diagnosis technique is to automatically find abnormal signals in the machine using acoustic emission. Conventional methods of using mathematical models have been found to be inaccurate due to the complexity of industrial mechanical systems and the existence of nonlinear factors such as noise. Therefore, any fault diagnosis issue can be treated as a pattern recognition problem. We propose an automatic fault diagnosis method using discrete wavelet transform and power spectrum density using multi pattern recognition. First, we perform DWT-based filtering analysis for noise cancelling and effective feature extraction. Next, the power spectral density(PSD) is performed on each subband of the DWT in order to effectively extract feature vectors of sound. Finally, each PSD data is extracted with the features of the classifier using multi pattern recognition. The results show that the proposed method can not only be used effectively to detect faults as well as apply to various automatic diagnosis system based on sound.

이상감지 상관계수를 이용한 선박디젤기관의 고장진단시스템에 관한 연구 (The Fault Diagnosis of Marine Diesel Engines Using Correlation Coefficient for Fault Detection)

  • 김경엽;김영일;유영호
    • 한국항행학회논문지
    • /
    • 제15권1호
    • /
    • pp.18-24
    • /
    • 2011
  • 본 논문은 선박 감시 시스템에서 수집된 데이터를 통계적 분석을 통해 고장유무를 진단할 수 있는 통계적 방법 기반의 고장진단시스템을 제안한다. 이를 위해 선박엔진데이터를 연소계통, 열교환계통, 그리고 전동기 및 펌프계통으로 분류하고 이들 데이터 간 상관계수를 분석하여 고장진단을 위해 필요한 전문가지식기반의 진단테이블을 도출한다. 고장진단성능을 테스트하기 위해 실제 운항데이터에 고장의 원인이 될 수 있는 외란을 삽입하여 고장유무를 판단하며 이를 사용자편의의 인터페이스로 제공하기 위해 VC++로 고장진단시스템을 구현한다.

RSA 멱승 알고리즘의 제어문에 대한 오류 주입 공격 (Fault Analysis Attacks on Control Statement of RSA Exponentiation Algorithm)

  • 길광은;백이루;김환구;하재철
    • 정보보호학회논문지
    • /
    • 제19권6호
    • /
    • pp.63-70
    • /
    • 2009
  • 최근의 연구는 RSA와 같은 암호 시스템에서 멱승 알고리즘을 구현할 경우 물리적 공격에 취약하여 비밀 키를 노출할 수 있음을 보이고 있다. 특히, Schmidt와 Hurbst는 RSA 이진 멱승(binary exponentiation) 실행시 수행하는 제곱(squaring) 연산을 건너뛰게 하여 얻은 오류 서명값을 이용하여 비밀 키를 얻을 수 있음을 실험적으로 보였다. 본 논문에서는 Schmidt와 Hurbst의 공격 가정에 기반하여 곱셈(multiplication) 연산이나 반복 제어문 연산을 건너뛰어 비밀 키를 공격하는 방법을 제안한다. 또한, 반복 제어문을 건너뛰는 오류 공격을 확장하여 단순 전력 분석 공격(simple power analysis)공격에 대응하기 위해 제안된 몽고메리(Montgomery ladder) 멱승 알고리즘도 공격할 수 있음을 보인다.

센서 데이터 변곡점에 따른 Time Segmentation 기반 항공기 엔진의 고장 패턴 추출 (Fault Pattern Extraction Via Adjustable Time Segmentation Considering Inflection Points of Sensor Signals for Aircraft Engine Monitoring)

  • 백수정
    • 산업경영시스템학회지
    • /
    • 제44권3호
    • /
    • pp.86-97
    • /
    • 2021
  • As mechatronic systems have various, complex functions and require high performance, automatic fault detection is necessary for secure operation in manufacturing processes. For conducting automatic and real-time fault detection in modern mechatronic systems, multiple sensor signals are collected by internet of things technologies. Since traditional statistical control charts or machine learning approaches show significant results with unified and solid density models under normal operating states but they have limitations with scattered signal models under normal states, many pattern extraction and matching approaches have been paid attention. Signal discretization-based pattern extraction methods are one of popular signal analyses, which reduce the size of the given datasets as much as possible as well as highlight significant and inherent signal behaviors. Since general pattern extraction methods are usually conducted with a fixed size of time segmentation, they can easily cut off significant behaviors, and consequently the performance of the extracted fault patterns will be reduced. In this regard, adjustable time segmentation is proposed to extract much meaningful fault patterns in multiple sensor signals. By considering inflection points of signals, we determine the optimal cut-points of time segments in each sensor signal. In addition, to clarify the inflection points, we apply Savitzky-golay filter to the original datasets. To validate and verify the performance of the proposed segmentation, the dataset collected from an aircraft engine (provided by NASA prognostics center) is used to fault pattern extraction. As a result, the proposed adjustable time segmentation shows better performance in fault pattern extraction.

SVMs 을 이용한 유도전동기 지능 결항 진단 (Intelligent Fault Diagnosis of Induction Motor Using Support Vector Machines)

  • Widodo, Achmad;Yang, Bo-Suk
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2006년도 추계학술대회논문집
    • /
    • pp.401-406
    • /
    • 2006
  • This paper presents the fault diagnosis of induction motor based on support vector machine(SVMs). SVMs are well known as intelligent classifier with strong generalization ability. Application SVMs using kernel function is widely used for multi-class classification procedure. In this paper, the algorithm of SVMs will be combined with feature extraction and reduction using component analysis such as independent component analysis, principal component analysis and their kernel(KICA and KPCA). According to the result, component analysis is very useful to extract the useful features and to reduce the dimensionality of features so that the classification procedure in SVM can perform well. Moreover, this method is used to induction motor for faults detection based on vibration and current signals. The results show that this method can well classify and separate each condition of faults in induction motor based on experimental work.

  • PDF

The Use of Support Vector Machines for Fault Diagnosis of Induction Motors

  • Widodo, Achmad;Yang, Bo-Suk
    • 한국해양공학회:학술대회논문집
    • /
    • 한국해양공학회 2006년 창립20주년기념 정기학술대회 및 국제워크샵
    • /
    • pp.46-53
    • /
    • 2006
  • This paper presents the fault diagnosis of induction motor based on support vector machine (SVMs). SVMs are well known as intelligent classifier with strong generalization ability. Application SVMs using kernel function is widely used for multi-class classification procedure. In this paper, the algorithm of SVMs will be combined with feature extraction and reduction using component analysis such as independent component analysis, principal component analysis and their kernel (KICA and KPCA). According to the result, component analysis is very useful to extract the useful features and to reduce the dimensionality of features so that the classification procedure in SVM can perform well. Moreover, this method is used to induction motor for faults detection based on vibration and current signals. The results show that this method can well classify and separate each condition of faults in induction motor based on experimental work.

  • PDF

지중송전 시스템의 병행지선 설치 방안 연구 (Methodology of Parallel Ground Conductor Installation on Underground Transmission System)

  • 홍동석;박성민;한광현
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2008년도 제39회 하계학술대회
    • /
    • pp.470-471
    • /
    • 2008
  • SVL is installed at underground transmission system to protect cables and insulation joint-box from overvoltages caused by lightning, switching, and line-to-ground fault. Domestic underground power system adopts cross bonding type to reduce the induced voltage at sheath, but single-point bonding is required depending the system installation configuration. SVL can be easily broken by overvoltages induced at joint-box because single-point bonding has uneffective system structure to extract fault current. ANSI/IEEE recommends Parallel Ground Continuity Conductor(PGCC) to prevent SVL breakdown. In this paper, EMTP simulation is performed to analyze effects on SVL under PGCC installation when single-line-to-ground fault occurs. The result shows that PGCC and short single-point bonding distance can reduce overvoltages at SVL.

  • PDF

프로니해석법을 이용한 공진 주파수 검출 알고리즘 (Oscillation Frequency Detecting Technique for Transmission Line Protection using Prony's Analysis)

  • 조경래;김성수;박종근;홍준희
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1995년도 하계학술대회 논문집 B
    • /
    • pp.509-512
    • /
    • 1995
  • The relaying algorithm to calculate the fault distance from only transient signal at faults in T/L is presented. In this paper. At faults the oscillation frequency components exist in both voltage and current and these components minimize the input impedance shown in fault point. The equivalent source impedance shown in relaying point is needed to calculate the fault distance using these components. To source impedance, the reflection coefficient between forward wave and backward and the Prony's analysis is also employed to extract the oscillation frequency component from transient signals. The case study show that the new distance relaying algorithm satisfies the high operation speed and high accuracy even if the algorithm uses only transient signals.

  • PDF

A Realization of Reduced-Order Detection Filters

  • Kim, Yong-Min;Park, Jae-Hong
    • International Journal of Control, Automation, and Systems
    • /
    • 제6권1호
    • /
    • pp.142-148
    • /
    • 2008
  • In this paper, we deal with the problem of reducing the order of the detection filter for the linear time-invariant system. Even if the detection filter is generally designed in the form of full order linear observer, we show that it is possible to reduce its order when the response of fault signals is limited to a subspace of the estimation state space. We propose a method to extract the subspace using the observer canonical form considering the dynamics related to the remaining subspace acts as a disturbance. We designed a reduced order detection filter to reject the disturbance as well as to guarantee fault detection and isolation. A simulation result for a 5th order system is presented as an illustrative example of the proposed design method.

소형 고정익기의 신호기반 조종면 고장진단 알고리즘 (Signal-based Fault Diagnosis Algorithm of Control Surfaces of Small Fixed-wing Aircraft)

  • 김지환;구윤성;이형철
    • 한국항공우주학회지
    • /
    • 제40권12호
    • /
    • pp.1040-1047
    • /
    • 2012
  • 본 논문에서는 소형 고정익기의 고장 발생시기와 부품 교체시기를 예측하여 유지보수 비용을 절감하고 정비 효율을 높이기 위하여 ANPSD와 PCA, 그리고 GC 방법을 이용하여 조종면의 고장에 대하여 이를 검출하고 위치와 정도를 분리하는 알고리즘을 제안하였다. 이때 ANPSD는 주파수 영역에서의 진동 분석을, PCA는 ANPSD의 중요 정보 추출을, GC는 고장 검출 및 분리 시의 오류 최소화를 위하여 사용되었다. 또한 모형 항공기에 가속도 센서를 부착하여 정상인 경우와 힌지 고장이 발생한 경우에 대하여 실제로 측정한 결과에 이와 같은 알고리즘을 적용한 결과 해당 알고리즘이 고장을 검출하고 분리하는 데에 적합함을 보였으며 제안된 알고리즘을 적용할 경우에 발생 가능한 문제들에 대하여 이를 완화할 수 있는 대응책을 함께 제시하였다.