본 논문에서는 단위 시단 동안 주로 작용하는 정서를 '지배적 정서(dominant emotion)'라고 정의하고, 문학작품의 지배적 정서 흐름을 자동적으로 추출하기 위한 방법론을 제시한다. 한국어는 언어 구조적 특성상 접미어에 따라 의미가 역전되거나 달라질 수 있다. 하지만 소설이나 수필 같이 일정 이상의 분량을 가진 텍스트에서 정서 단어를 추출한다면 어느 정도 추출이 잘못되어도 지배적 정서 흐름을 판단하는 것이 가능한 것이다. 문학작품에서 지배적 정서를 추출하기 위한 절차는 다음과 같다. 먼저 문학작품의 전제 텍스트에서 형태소를 분석하여 형태소 단위의 단어를 추출한다. 추출된 단어를 정서 단어 데이터베이스와 매칭하여 정서적 의미를 담고 있는 단어를 분리해 낸다. 분리된 단어들을 정서 모델에 사상하여 해당 단어가 갖고 있는 정서를 도출한다. 도출된 정서 단어들을 통해 지배적 정서를 분석한다. 제안한 방법론에 따라 현진건의 현대소설 '운수 좋은 날'과 윤오영의 수필 '방망이 깎던 노인'을 분석한 결과, 지배적 정서의 흐름을 파악할 수 있었다.
In this Paper, we propose the neural network based emotion recognition method for intelligently recognizing the human's emotion using CCD color image. To do this, we first acquire the color image from the CCD camera, and then propose the method for recognizing the expression to be represented the structural correlation of man's feature Points(eyebrows, eye, nose, mouse) It is central technology that the Process of extract, separate and recognize correct data in the image. for representation is expressed by structural corelation of human's feature Points In the Proposed method, human's emotion is divided into four emotion (surprise, anger, happiness, sadness). Had separated complexion area using color-difference of color space by method that have separated background and human's face toughly to change such as external illumination in this paper. For this, we propose an algorithm to extract four feature Points from the face image acquired by the color CCD camera and find normalization face picture and some feature vectors from those. And then we apply back-prapagation algorithm to the secondary feature vector. Finally, we show the Practical application possibility of the proposed method.
Paintings can evoke emotions in viewers. In this paper, we propose a method for extracting emotion from paintings by using the colors that comprise the paintings. For this, we generate color spectrum from input painting and compare the color spectrum and color combination for finding most similarity color combination. The found color combinations are mapped with emotional keywords. Thus, we extract emotional keyword as the emotion evoked by the painting. Also, we vary the form of algorithms for matching color spectrum and color combinations and extract and compare results by using each algorithm.
최근 인간의 감성에 반응하고, 감성을 유도하는 감성콘텐츠가 문화산업 분야에서 크게 주목을 받으면서 멀티미디어 콘텐츠가 유발하는 감성 추출에 초점이 모아지고 있다. 게다가 최근 멀티미디어 콘텐츠가 빠르고 방대하게 생산, 유통되는 흐름으로 볼 때 콘텐츠에서 유발하는 감성을 자동으로 추출하는 기법의 연구들이 주목받고 있다. 본 논문은 멀티미디어 콘텐츠의 소리 정보 중 특정 주파수대역의 볼륨 값을 활용하여 멀티미디어 콘텐츠 내의 감성지수를 추출하는 방법에 대해 연구하고자 한다. 이러한 연구는 동영상 콘텐츠의 감성지수를 자동으로 추출할 수 있도록 하며 추출된 정보를 활용하여 사용자의 현재 감성, 혹은 날씨 등과 같은 기타 요소에 맞추어 사용자에게 맞춤형 콘텐츠를 제공하는데 사용되어질 것이다.
Recently, computer form were smaller than before because of computing technique's development and many wearable device are formed. So, computer's cognition of human emotion has importantly considered, thus researches on analyzing the state of emotion are increasing. Human voice includes many information of human emotion. This paper proposes a discriminative feature vector selection for emotion classification based on speech. For this, we extract some feature vectors like Pitch, MFCC, LPC, LPCC from voice signals are divided into four emotion parts on happy, normal, sad, angry and compare a separability of the extracted feature vectors using Bhattacharyya distance. So more effective feature vectors are recommended for emotion classification.
Understanding of human emotion has a high importance in interaction between human and machine communications systems. The most expressive and valuable way to extract and recognize the human's emotion is by facial expression analysis. This paper presents and implements an automatic extraction and recognition scheme of facial expression and emotion through still image. This method has three main steps to recognize the facial emotion: (1) Detection of facial areas with skin-color method and feature maps, (2) Creation of the Bezier curve on eyemap and mouthmap, and (3) Classification and distinguish the emotion of characteristic with Hausdorff distance. To estimate the performance of the implemented system, we evaluate a success-ratio with emotional face image database, which is commonly used in the field of facial analysis. The experimental result shows average 76.1% of success to classify and distinguish the facial expression and emotion.
본 논문은 드라마 대본으로부터 성격을 추출해 내고, 추출된 성격을 인공정서 캐릭터에 반영하는 것을 목표로 한다. 드라마 대본을 이용하여 등장인물의 성격을 인공정서 캐릭터에 반영하는 과정은 다음과 같다. 먼저 드라마 대본에서 등장인물별로 텍스트를 분리한다. 분리된 텍스트에 대하여 형태소를 분석하고, 분석된 형태소들을 정서단어 데이터베이스와 매칭하여 정서 단어를 추출한다. 추출된 정서 단어를 이용하여 지배정서를 분석한다. 분석된 지배정서를 인공정서의 성격을 결정하는 수식에 반영하여 캐릭터의 성격을 설정한다. 드라마 등장인물의 성격이 반영된 인공정서 캐릭터를 검증하기 위해 블라인드 테스트를 통해 사용자 평가를 진행하였다. 외관상 동일한 세 개의 인공정서 캐릭터에 각각 서로 다른 등장인물의 성격을 반영하였다. 그리고 사용자에게 세 개의 인공정서 캐릭터에 어떤 등장인물의 성격이 반영된 것인지 맞추도록 하였다. 평가 결과, 사용자들은 높은 비율로 정답을 맞추었고, 이를 통해 등장인물의 성격이 잘 반영되었음을 확인할 수 있었다.
최근 대량의 SNS(Social Network Service) 데이터로부터 유용한 정보를 추출하고 사용자의 진의 정보를 평가하기 위한 오피니언 마이닝(opinion mning)이 소개되고 있다. 오피니언 마이닝은 대량의 SNS 데이터로부터 빠른 기간 내에 데이터를 수집하고 분석하여 목적에 적합한 정보를 추출하는 효율적인 기법이 필요하다. SNS에서 발생되는 다양한 비정형 데이터로부터 감성정보를 추출하기 위해, 본 논문에서는 하둡(Hadoop) 시스템 기반의 병렬적 HDFS(Hadoop Distributed File System)와 맵리듀스(MapReduce) 기반 감성분석 함수를 제안한다. 실험결과로 제안한 시스템과 함수는 데이터 수집과 적재시간에 대해 O(n)보다 빠르게 처리하며, 메모리와 CPU 자원에 대해 안정적인 부하분산이 이루어지는 것을 확인하였다.
본 논문에서는 지역적으로 서로 다른 감성을 지닌 영상을 검출하기 위해서 감성 스케치를 이용한 영상 검색 시스템을 제안 하였다. 제안하는 검색 시스템은 영상을 $17{\times}17$의 겹치지 않는 부분영역으로 나누고, 각 부분영역에 대한 감성 특징을 추출한다. 본 논문에서는 부분영역 내에서 감성 특징을 추출하기 위해서, H. Nagumo의 배색이미지차트에서 제안하는 160개 감성어에 대한 감성 색상을 이용하였다. 부분영역으로부터 해당 감성어에 대한 감성 색상의 분포정도를 계산하여 각 부분영역의 감성어에 대한 히스토그램 값 중 가장 큰 값을 지닌 감성어를 취하게 된다. 제안하는 감성 스케치를 이용한 영상 검색 시스템은 Corel 영상 데이터베이스에 대해서 유효성을 평가하여, 전역적 방법보다 우수한 검색 정확도와 재현도를 가짐을 보여주었다.
Facial expression is innate communication skill of human. Human can recognize theri psychological state by facial parameters which contain surface movement, color, humidity and etc. This study is to quantify or qualify human emotion by measurement of facial electromyography (EMG) and facial movement. The measurement is taken at the facial area of frontalis and zygomaticus The results is indicative to discriminate the positive and negative respond of emotion and to extract the parameter sensitive to positive and negative facial-expression. The facial movement according to EMG shows the possibility of non-invasive technique of human emotion.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.