• Title/Summary/Keyword: Extracellular Matrix Proteins

Search Result 145, Processing Time 0.023 seconds

The Effect of Low Molecule Collagen Peptide on Skin Anti-glycation and Collagen Synthesis as a Skin Aging Therapy (피부 노화 치료로서 저분자콜라겐펩타이드의 피부 항당화와 콜라겐 합성 효과)

  • Kim, Hong Seok;Hong, Won Kyu;Lee, Mun Hoe;Kim, Hyeong Min;Chung, Hee Chul;Lee, Jin Hee
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • v.47 no.2
    • /
    • pp.147-153
    • /
    • 2021
  • Collagen hydrolysate (CH) is known to prevent skin aging by stimulating skin dermal fibroblasts to promote synthesis of extracellular matrix such as collagen and elastin. Recently, among the various factors that cause skin aging, advanced glycation end products (AGEs) have received particular attention. However, the effect of CH on AGE accumulation has not been studied. Since CH could affect AGE accumulation by promoting production of skin structural proteins, clinical trial was performed using low molecule collagen peptide (LMCP), which were CH containing 25% tripeptide and 4% Gly-Pro-Hyp. Skin autofluorescence (SAF) values were measured using an AGE reader to evaluate accumulation of AGE in skin. As a result of applying 0.5% and 1.0% LMCP solutions to the subject's forearm for 8 weeks, the SAF value at the test site significantly decreased compared to the control site. Additionally, in vitro test was performed using CCD-986sk to evaluate the promotion of collagen synthesis in skin fibroblasts by LMCP. As a result, 800 ㎍/mL of LMCP significantly increased synthesis of human pro-collagen Iα1 (COL1A1) in CCD-986sk. Through this study, we have confirmed that tropical LMCP applications can promote collagen synthesis to help anti-glycation effects, suggesting that LMCP has potential as an anti-aging cosmetic material.

The Effect of Hydrolyzed Jeju Ulva pertusa on the Proliferation and Type I Collagen Synthesis in Replicative Senescent Fibroblasts (제주 구멍갈파래 가수분해물에 의한 노화된 섬유아세포 증식 및 콜라겐 합성증진 효과)

  • Ko, Hyun Ju;Kim, Gyoung Bum;Lee, Dong Hwan;Lee, Geun Soo;Pyo, Hyeong Bae
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • v.39 no.3
    • /
    • pp.177-186
    • /
    • 2013
  • Skin dermal fibroblast is the major collagen-producing cell type in human skin. As aging process continues in human skin, collagen production is reduced and fragmentation is increased, which is initiated by matrix metalloproteinase-1 (MMP-1). This imbalance of collagen homeostasis impairs the structure and function of dermal collagenous extracellular matrix (ECM), thereby promoting skin aging. Cysteine-rich protein 61 (CCN1), a member of the CCN family, negatively regulates collagen homeostasis in primary human skin dermal fibroblast cells. It is known in aging fibroblast cells that elevated CCN1 expression substantially reduces type I procollagen and concurrently increases MMP-1, which initiates fibrillar collagen degradation. And proliferation rate of aging fibroblast cells is reduced compared to the pre-aging fibroblast cells. In this study, we confirmed that the replicative senescence dermal fibroblast cells increased the expression levels of MMP-1 and decreased the production of type I procollagen. Our results also showed that the replicative senescence dermal fibroblast cells increased in the expression of CCN1 and decreased in the proliferation rate. Hydrolyzed Ulva pertusa extracts are the materials to improve photo-aging by reducing the expression of MMP-1 that was increased by ultraviolet and by promoting the synthesis of new collagen from fibroblast cells. In this study, we also investigated the hydrolyzed U. pertusa extract to see whether it inhibits CCN1 protein expression in the senescence fibroblasts. Results showed that the hydrolyzed U. pertusa extract inhibited the expression of MMP-1 and increased the production of type I procollagen in the aging skin fibroblast cells cultured. In addition, the proteins that regulate collagen homeostasis CCN1 expression were greatly reduced. The hydrolyzed U. pertusa extract increased the proliferation rate of the aging fibroblast cells. These results suggest that replicative senescent fibroblast cells may be used in the study of cosmetic ingredients as a model of the natural aging. In conclusion, the hydrolyzed U. pertusa extract can be used in anti-wrinkle functional cosmetic material to improve the natural aging skin care as well as photo-aging.

Effect of Cervi Pantotrichum Cornu Herbal acupuncture on protease activities, antioxidant in Rheumatoid arthritis rats (류마티스 관절염 실험용쥐의 활액에서 단백분해효소의 활성 및 항산화에 대한 녹용약침의 효과)

  • Park, Sang-Dong;Kim, Min-Jeong;Lee, A-Ram;Jang, Jun-Hyouk;Kim, Kyung-Ho
    • Journal of Acupuncture Research
    • /
    • v.19 no.2
    • /
    • pp.51-64
    • /
    • 2002
  • We have compared(using the same series of experimental tissue samples) the levels of proteolytic enzyme activities and free radical-induced protein damage in synovial fluid from RA and CPH cases. Many protease types showed significantly increased (typically by a factor of approximately 2-3-fold) activity in RA, compared to normal rats. However, CPH significantly reduced the cytoplasmic enzyme activities of arginyl aminopeptidase, leucyl aminopeptidase, pyroglutamyl aminopeptidase, tripeptidyl aminopeptidase, and proline endopeptidase to almost about 1/10 each. For the Iysosomal proteases, synovial fluid samples from RA rats, CPH significantly reduced the enzyme activities of cathepsin B, dipeptidyl aminopeptidase I and dipeptidyl aminopeptidase II. In extracellular matrix degrading(collagenase, tissue elastase) and leukocyte as sociated proteases (leukocyte elastase, cathepsin G), CPH decreased these enzyme activities of collagenase, tissue elastase and leukocyte associated elastase in RA. In cytoplasmic and lysosomal protease activities in plasma from RA. CPH and normal plasma samples were not significantly different, suggesting that altered activity of plasma proteases (particularly those enzymes putatively involved in the immune response) is not a contributory factor in the pathogenesis of RA. In addition, the level of free radical induced damage to synovial fluid proteins was approximately twice that in RA, compared with CPH. CPH significantly decreased the level of ROS induced oxidative damage to synovial fluid proteins (quantified as protein carbonyl derivative). Therefore we conclude that both proteolytic enzymes and free radicals are likely to be of equal potential importance as damaging agents in the pathogenesis of inflammatory joint disease, and that the design of novel therapeutic strategies for patients with the latter disorder should include both protease inhibitory and free radical scavenging elements. In addition, the protease inhibitory element should be designed to inhibit the action of a broad range of protease mechanistic types (i.e. cysteine-, metallo- and serine- proteinases and peptidases). However, increased protein damage induced by ROS could not be rationalised in terms of compromised antioxidant total capacity, since the latter was not significantly altered in RA synovial fluid or plasma compared with CPH.

  • PDF

Clinical Significance of Plasma TGF-${\beta}_1$ in Coal Workers' Pneumoconiosis (탄광부 진폐증에서 혈장 Transforming Growth Factor-${\beta}_1$의 의의)

  • Kim, Chong-Ju;Lee, Won-Yeon;Hong, Ae-Ra;Shin, Pyo-Jin;Yong, Suk-Joong;Shin, Kye-Chul
    • Tuberculosis and Respiratory Diseases
    • /
    • v.50 no.1
    • /
    • pp.76-83
    • /
    • 2001
  • Background : Coal workers' pneumoconiosis is a fibrotic lung disease resulting from chronic inhalation of coal dust. The precise mechanism of lung fibrosis in coal workers' pneumoconiosis is uncertain. However, a relationship between the stimulation of fibroblast proliferation and collagen production by mediators released from in flammatory and resident lung cells is thought to be a major factor. The transforming growth factor-$\beta$(TGF-$\beta$), a multifunctional cytokine and growth factor, plays a key role in the scarring and fibrotic processes due to its ability to induce extracellular matrix proteins and modulate the growth and immune function of many cell types. To determine the involvement of TGF-$\beta$ in the development of lung fibrosis in coal workers' pneumoconiosis, the TGF-${\beta}_1$ level in plasma was measured in patients with coal workers' pneumoconiosis. Methods : Plasma was collected from 40 patients with coal workers' pneumoconiosis (20 with simple coal workers' pneumoconiosis and 20 with complicated coal workers' pneumoconiosis) and from 10 normal controls. The ELISA method was used to measure the plasma TGF-${\beta}_1$ concentration. Results : Compared to the control group ($0.63{\pm}01.8$ ng/mL), there was no significant difference in the plasma TGF-${\beta}_1$ level in patients with simple coal workers' pneumoconiosis ($0.64{\pm}0.17$ ng/mL) (p>0.05). However, in patients with complicated coal workers' pneumoconiosis the plasma TGF-${\beta}_1$ level ($0.79{\pm}0.18$ ng/mL) was significantly higher than in patients with simple coal workers' pneumoconiosis and the control group (p<0.05). Conclusion : The data suggests that TGF-${\beta}_1$ has some influence in the development of lung fibrosis in coal workers' pneumoconiosis.

  • PDF

Development of Natural Antioxidants and Whitening Agents for Cosmeceuticals

  • Kim, Jong-Pyung
    • Proceedings of the Korean Society of Applied Pharmacology
    • /
    • 2007.11a
    • /
    • pp.79-92
    • /
    • 2007
  • Oxidative stress have known to be a risk factor for the degenerative processes and closely related to a lot of diseases. It is well established that antioxidants are good in protection and therapeutic means against oxidative damage. There is increasing interest in natural antioxidants and many natural antioxidants have been found and utilized as the possible protection for various diseases and skin aging. We have screened natural antioxidant agents for cosmeceuticals, nutraceuticals, and drugs as therapeutic and preventive means against oxidative stress, and have developed a number of novel antioxidants from various natural sources. A novel melanin synthesis inhibitor, Melanocin A, isolated from the metabolite of a fungal strain Eupenicillium shearii F80695 inhibited mushroom tyrosinase and melanin biosynthesis of B16 melanoma cells with $IC_{50}$ value of 9.0 nM and MIC value of $0.9\;{\mu}M$, respectively. Melanocin A also exhibited potent antioxidant activity by scavenging of DPPH and superoxide anion radicals. UV was found to increase the level of hydrogen peroxides and other reactive oxygen species (ROS) in skin tissues. This increase in ROS may not only alter the structure and function of many genes and proteins directly but may also modulate their expressions through signal transduction pathways and, ultimately, lead to skin damage. We investigated the effect of Melanocin A on UV-induced premature skin aging. Firstly, the effect of Melanocin A on UV-induced matrix metalloproteinase (MMP)-9 expression in an immortalized human keratinocyte cell line, HaCaT in vitro was investigated. Acute UV irradiation induced MMP-9 expression at both the mRNA and protein levels and Melanocin A suppressed this expression in a dose-dependent manner. We then investigated UV-induced skin changes in hairless mice in vivo by Melanocin A. Chronic exposure of hairless mouse dorsal skin to UV increased skin thickness and induced wrinkle formation and the gelatinase activities of MMP-2 and MMP-9. Moreover, Melanocin A significantly suppressed UV-induced morphologic skin changes and MMP-2 and MMP-9 expression. These results show that Melanocin A can prevent the harmful effects of UV that lead to skin aging. Therefore, we suggest that Melanocin A should be viewed as a potential therapeutic agent for preventing and/or treating premature skin aging. Terrein is a bioactive fungal metabolite isolated from Penicillium species. Terrein has a relatively simple structure and can be easily synthesized. However, the biologic effects of terrein are comparatively unknown. We found for the first time that terrein potently inhibit melanin production in melanocytes and has a strong hypopigmentary effect in a spontaneously immortalized mouse melanocyte cell line, Mel-Ab. Treatment of Mel-Ab cells with terrein (10-100 mM) for 4 days significantly reduced melanin levels in a dose-dependent manner. In addition, terrein at the same concentration also reduced tyrosinase activity. We then investigated whether terrein influences the extracellular signal-regulated protein kinase (ERK) pathway and the expression of microphthalmia-associated transcription factor (MITF), which is required for tyrosinase expression. Terrein was found to induce sustained ERK activation and MITF down-regulation, and luciferase assays showed that terrein inhibits MITF promoter activity in a dose-dependent manner. To elucidate the correlation between ERK pathway activation and a decreased MITF transcriptional level, PD98059, a specific inhibitor of the ERK pathway, was applied before terrain treatment and found to abrogate the terrein-induced MITF attenuation. Terrein also reduced the tyrosinase protein level for at least 72 h. These results suggest that terrain reduces melanin synthesis by reducing tyrosinase production via ERK activation, and that this is followed by MITF down-regulation.

  • PDF