• 제목/요약/키워드: Extra Straining Effect

검색결과 4건 처리시간 0.016초

이차적인 변형률효과를 나타내는 새로운 변수의 제안 (Proposal of a New Parameter for Extra Straining Effects)

  • 명현국
    • 대한기계학회논문집
    • /
    • 제18권1호
    • /
    • pp.184-192
    • /
    • 1994
  • The parameters such as Richardson numbers or stability parameters are widely used to account for the extra straining effects due to three-dimensionality, curvature, rotation, swirl and others arising in paractical complex flows. Existing expressions for the extra strain in turbulence models such as $k-{\epsilon}$ models, however, do not satisfy the tensor invariant condition representing the coordinate indifference. In the present paper, considering the characteristics of both the mean strain rate and the mean vorticity, a new parameter to deal with the extra straining effects is proposed. The new parameter has a simple form and satisfies the tensor invariant condition. A semi-quantitative analysis between the present and previous parameters for several typical complex flows suggests that the newly proposed parameter is more general and adequate in representing the extra straining effects than the previous ad-hoc parameters.

이차적인 변형률효과를 고려한 텐서 불변성 난류에너지 소산율방정식 (A Tensor Invariant Dissipation Equation Accounting for Extra Straining Effects)

  • 명현국
    • 대한기계학회논문집
    • /
    • 제18권4호
    • /
    • pp.967-976
    • /
    • 1994
  • A tensor invariant model equation for the turbulent energy dissipation rate is proposed in the present study, which is able to simulate secondary straining effects such as curvature effects without the introduction of additional empirical input. The source term in this model has a combined form of the generation term due to the mean vorticity with the conventional one due to the mean strain rate. An extended low-Reynolds-number $k-\epsilon$ turbulence model involving this new model equation is tested for a turbulent Coutte flow between coaxial cylinders with inner cylinder rotated, which is a well defined example of curved flows. The predicted results indicate that the present model works much better for this flow, compared with previous models.

표면에 부착된 장애물 주위의 난류전단유동에 관한 수치해석 (Numerical Simulation on Turbulent Shear Flows over Surface-Mounted Obstacles)

  • 명현국
    • 대한기계학회논문집B
    • /
    • 제20권8호
    • /
    • pp.2593-2600
    • /
    • 1996
  • A modified k-$\varepsilon$ turbulence model having a generality is proposed in the present study, in which the constant $C_{\varepsilon2}$in the $\varepsilon$-equation is simply changed as a functional form of a new parameter both satisfying the tensor invariant condition and representing the extra straining effect on complex shear flows. With this model turbulent shear flows over two-dimensional obstacles placed in a channel are numerically studied for different blockage ratios and aspect ratios. Comparing with the available experimental data, the predicted results with the present model provide definite improvements over the standard model's results and work fairly well with the experimental data on the size of the recirculation zone, as well as mean velocity, wall static pressure, turbulent kinetic energy and Reynolds stresses.

비등방 $k-\varepsilon$ 난류모델에 의한 회전 덕트유동의 수치해석 (Numerical Analysis of Rotating Channel Flow with an Anisotropic $k-\varepsilon$ Turbulence Model)

  • 명현국
    • 대한기계학회논문집B
    • /
    • 제21권8호
    • /
    • pp.1046-1055
    • /
    • 1997
  • An anisotropic k-.epsilon. turbulence model for predicting the rotating flows is proposed with the simple inclusion of a new parameter dealing with the extra straining effects in the .epsilon.-equation. This model is employed to compute the effects of Coriolis forces on fully-developed flow in a rotating channel. The predicted results indicate that the present model captures fairly well the striking rotational-induced effects on the Reynolds stresses and the mean flow distributions, including the argumentation of turbulent transport on the unstable side (pressure surface) of the channel and its damping on the stable side (suction surface).