• Title/Summary/Keyword: External force estimator

Search Result 7, Processing Time 0.024 seconds

Variable Impedance Control for Industrial Manipulators Based on Sensor-Less External Force Estimator for CPPS (CPPS를 위한 산업용 매니플레이터의 힘 센서리스 외력 추정기 기반 적응 임피던스 제어)

  • Park, Jongcheon;Han, Seungyong;Jin, Yongsik;Lee, Sangmoon
    • IEMEK Journal of Embedded Systems and Applications
    • /
    • v.14 no.5
    • /
    • pp.259-267
    • /
    • 2019
  • This paper proposes a structure of a variable impedance control system based on sensor-less external force estimator of industrial manipulators for cyber physical production systems (CPPS). To implement CPPS, a feedback system is constructed by using the robot operating system (ROS) and an external force estimator which is designed to measure the external force applied to the manipulator without a force sensor. Based on the robot dynamics, the robot-human cooperating system for the cyber physics production system is implemented through a controller that changes the impedance characteristics of the manipulator according to the situation using the external force estimator. Simulation and experimental results verify the effectiveness of the proposed control system.

Observer Based Sensorless Rorce Control of Robot Manipulator

  • Suh, Il-Hong;Eom, Kwang-Sik;Lee, Chang-Eun
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1997.10a
    • /
    • pp.803-806
    • /
    • 1997
  • In this paper, a force estimation method is proposed for the sensorless force control. For this, a disturbance observer is applied to each joint of an n degrees of freedom manipulator to obtain a simple equivalent robot dynamics(SERD) being represented as an n independent double integrator system. To estimate the output of disturbance observer in the absence of external force, the observer estimator is designed, where the uncertain parameters of the robot manipulator are adjusted by gradient method to minimize the output between the disturbance observer and the observer estimator. When the external force is exerted, the external force is estimated using the difference between the output of disturbance observer which include the external torque signal and that of observer estimator. And then, a force controller is designed for force feedback control employing the estimated force signal. To verify the effectiveness of the proposed force estimation method, several numerical examples are illustrated for the 2-axis planar type robot manipulator.

  • PDF

Design of Force Estimator Based on Disturbance Observer (외란 관측기에 기반을 둔 힘 추정기 설계)

  • 엄광식;서일홍
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.48 no.9
    • /
    • pp.1140-1146
    • /
    • 1999
  • In this paper, a force estimation method is proposed for force control without force sensor. For this , a disturbance observer is applied to each joint of an {{{{ { n}_{ } }}}} degrees of freedom manipulator to obtain a simple equivalent robot dynamics(SERD) being represented as an n independent double integrator system. To estimate the output of disturbance observer due to internal torque, the disturbance observer output estimator(DOOE) is designed, where uncertain parameters of the robot manipulator are adjusted by the gradient method to minimize the performance index which is defined as the quadratic form of the error signal between the output of disturbance observer and that of DOOE. when the external force is exerted, the external force is estimated by the difference between the output of disturbance observer and DOOE, since output of disturbance observer includes the external torque signal as well as the internal torque estimated by the output of DOOE. And then, a force controller is designed for force feedback control employing the estimated force signal. To verify the effectiveness of the proposed force estimation method, several numerical examples and experimental results are illustrated for the 2-axis direct drive robot manipulator.

  • PDF

Fuzzy Estimator for Gain Scheduling and its Appliation to Magnetic Suspension

  • Lee, Seon-Ho;Lim, Jong-Tae
    • Transactions on Control, Automation and Systems Engineering
    • /
    • v.3 no.2
    • /
    • pp.106-110
    • /
    • 2001
  • The external force disturbance is the one of the main causes that deteriorate the performance of the magnetic suspension. Thus, this paper develops a fuzzy estimator for gain scheduling control of magnetic suspension system suffering from the unknown disturbance. The propose fuzzy estimator computes the disturbance injected to the plant the gain scheduled controller generates the corresponding stabilizing control input associated with estimated disturbance. In the simulation results we confirm the novelty of the proposed control scheme comparing with the other method using a feedback linearization.

  • PDF

An intelligent integrated control system for steering and traction of electric vehicles (전기자동차의 조향과 추진을 위한 지능형 통합 제어 시스템)

  • 서일홍;박명관
    • Journal of the Korean Institute of Telematics and Electronics B
    • /
    • v.33B no.7
    • /
    • pp.21-31
    • /
    • 1996
  • An intelligent integrated control system is designed for the active steering and the left/right traction force distribution control of electric vehicles, where input-output linearization is employed. Also, a fuzzy-rule-based cornering force estimator is suggested to avoid using an uncertain highly nonlinear expression, and a neural network compensator is additively utilized for the estimator to correctly find cornering forece. With these techniques, the proposed control system is shown by simulation results to be robust against drastic change of the external environments such as road conditions.

  • PDF

Fuzzy Estimator for Gain Scheduling and its Application to Magnetic Suspension

  • Lee, S.H.;J.T. Lim
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2000.10a
    • /
    • pp.382-382
    • /
    • 2000
  • The external force disturbance is the one of the main causes that deteriorate the performance of the magnetic suspension. Thus, this paper develops a fuzzy estimator for gain scheduling control of magnetic suspension systems suffering from the unknown disturbance. The proposed fuzzy estimator computes the disturbance injected to the plant and the gain scheduled controller generates the corresponding stabilizing control input associated with the estimated disturbance. In the simulation results we confirm the novelty of the proposed control scheme comparing with the other method using a feedback linearization.

  • PDF

Design of an intelligent steering control system for four-wheel electric vehicles without steering mechanism (조향 기구가 없는 4륜 전기 구동 차량의 지능형 조향 제어 시스템의 설계)

  • 변상진;박명관;서일홍
    • Journal of the Korean Institute of Telematics and Electronics S
    • /
    • v.34S no.4
    • /
    • pp.12-24
    • /
    • 1997
  • An intelligent steering control system is designed for the steering control of a 4 wheel drive (4WD) electric vehicles without steering mechanism, where the vehicle is assumed to have 3 degree of freedom and input-output feedback linearization is employed. Especially, a fuzzy-rule-based side force estimator is suggested to avoid uncertain highlynonlinearexpression sof relations between side forces and their factors. Also, aneural-network-based predictive compensator is additionally utilized for the vehicle model to be correctly controlled with unstructured uncertainties. The proposed overall control system is numerically shown to be robust against drastic change of the external environments.

  • PDF