• Title/Summary/Keyword: External and internal stability

Search Result 277, Processing Time 0.026 seconds

Comparison of Behaviour of Straight and Curved Mechanically Stabilized Earth Walls from Numerical Analysis Results (수치해석을 통한 보강토옹벽 직선부와 곡선부의 거동 특성)

  • Jung, Hyuk-Sang
    • Journal of the Korean Geosynthetics Society
    • /
    • v.16 no.4
    • /
    • pp.83-92
    • /
    • 2017
  • This paper deals with numerical analysis of behavior of curved mechanically stabilized earth(MSE) walls with geosynthetics reinforcement. Unlike typical concrete retaining walls, MSE wall enables securing stability of higher walls without being constrained by backfill height and is currently and widely used to create spaces for industrial and residential complexes. The design of MSE walls is carried out by checking external stability, similarly to the external checks of conventional retaining wall. In addition, internal stability check is mandatory. Typical stability check based on numerical analysis is done assuming 2-dimensional condition (plane strain condition). However, according to the former studies of 3-dimensional MSE wall, the most weakest part of a curved geosynthetic MSE wall is reported as the convex location, which is also identified from the studies of the laboratory model tests and field monitoring. In order to understand the behaviour of the convex location of the MSE wall, 2-dimensional analysis clearly reveals its limitation. Furthermore, laboratory model tests and field monitoring also have restriction in recognizing their behaviour and failure mechanism. In this study, 3-dimensional numerical analysis was performed to figure out the behaviour of the curved part of the geosynthetic reinforced wall, and the results of the straight-line and curved part in the numerical analysis were compared and analysed. In addition, the behaviour characteristics at each condition were compared by considering the overburden load and relative density of backfill.

The Effect of Unstable Support Surface Plank Exercise on Flexibility, Abdominal Muscle Thickness and Pain in Chronic Low Back Pain (불안정한 지지면 위에서의 플랭크 운동이 만성허리통증환자의 유연성, 배 근육 두께 및 통증에 미치는 영향)

  • Han, Woo Jeong;Son, Kyung Hyun
    • Journal of Korean Physical Therapy Science
    • /
    • v.26 no.3
    • /
    • pp.23-36
    • /
    • 2019
  • Background: The purpose of this study was to investigate the effect of Plank exercise on unstable support surfaces on flexibility, abdominal muscle thickness and pain in patients with chronic back pain. Design: Randomized controlled trial. Methods: This study was performed on 16 patients with chronic back pain of ◯◯ military unit. Sixteen subjects were randomly assigned into two groups, an upper extremity trainer group (group I, n=8) and a lower extremity trainer group (group II, n=8). The subjects in group I carried out Flank exercise applying the stability trainer to their upper extremities and ones in group II carried out the same exercise applying the stability trainer to their lower extremities for 4 weeks. In order to ascertain the difference between two groups, flexibility, abdominal muscle thickness and pain were measured before and after the exercise. The flexibility was measured by sit and reach test, the thickness of the abdominal muscle was measured by using ultrasonic imaging equipment, and the pain was measured by the visual analogue scale. A paired t-test was utilized to compare changes in pain, abdominal muscle thickness and flexibility before and after flank exercise on unstable support surfaces. Analysis of Covariance (ANCOVA) was performed for ascertaining the significant differences between groups. The significance level was set by α=.05. Results: 1) The flexibilities of two groups were increased after the exercise (p<0.05). 2) In both groups, the thicknesses of rectus abdominis, external oblique abdominis, internal oblique abdominis, and transverse abdominis were all increased after the exercise (p<0.05). 3) The pains in both groups were decreased after the exercise (p<0.05). 4) In the comparisons of two groups, there were no differences in the flexibility, thickness of external oblique abdominis, internal oblique abdominis and transverse abdominis and pain (p>0.05). Whereas only thickness of Rectus abdominis was larger in the group I than in the group II (p<0.05). Conclusion: Plank exercise on the unstable support surface for 4 weeks resulted in increased flexibility, abdominal muscle thickness and pain reduction in patients with chronic back pain. Therefore, it is considered that performing flank exercise on the unstable supporting surface is suitable for the reduction of the pain in patients with chronic back pain. However, in this study, it is considered that continuous and diverse studies are needed because there was not a large difference between the groups when the upper or lower limbs are provided unstable support surfaces.

INFLUENCE OF TUNGSTEN CARBIDE/CARBON COATING ON THE PRELOAD OF IMPLANT ABUTMENT SCREWS (임플랜트 지대주 나사의 텅스텐 카바이드/탄소 코팅이 전하중에 미치는 영향에 관한 연구)

  • Choi Jin-Uk;Jeong Chang-Mo;Jeon Young-Chan;Lim Jang-Seop;Jeong Hee-Chan;Eom Tae-Gwan
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.44 no.2
    • /
    • pp.229-242
    • /
    • 2006
  • Statement of problem: In order to increase preload with reducing the friction coefficient, abutment screws coated with pure gold and Teflon as dry lubricant coatings have been introduced. But the reported data indicate that if screw repeated tightening and loosening cycle, an efficiency of increasing preload was decreased by screw surface wearing off. Purpose: This study was to evaluate the influence of tungsten carbide/carbon coating, which has superior hardness and frictional wear resistance, on the preload of abutment screws and the stability of coating surface after repeated closures. Material and method: The rotational values of abutment screws and the compressive forces between abutment and fixture were measured in implant systems with three different joint connections, one external butt joint and two internal cones. Moreover the stability and the alteration of coating surface were examined by comparison of the compressive force and the removable torque values during 10 consecutive trials, observation with scanning electron microscope and analyzed the elemental composition with energy dispersive x-ray spectroscopy Results and conclusion: 1. Application of coating resulted in significant increase of compressive force in all implant systems(P<.05). The increasing rate of compressive force by coating in external butt joint was gloater than those in internal cones (P<.05). 2. Coated screw showed the significant additional rotation compared to non-coated screw in all implant systems (P<.05). There were no significant differences in the increasing rate of rotation among implant systems (P>.05). 3. Removable torque values were greater with non-coated screw than that with coated screw (P<.05). 4. Coated screw showed insignificant variations in the compressive forces during 10 consecutive trials(P>.05) 5. After repeated trials, the surface layer of coated screw was maintained relatively well. However surface wearing and irregular titanium fragments were found in non-coated screw.

Three-Dimensional Finite Element Analysis for Comparison between Titanium Implant Abutment and Zirconia Implant Abutment (지르코니아 임플란트 지대주와 티타늄 임플란트 지대주의 삼차원적 유한요소응력분석)

  • Yun, Mi-Jung;Kim, Chang-Weop;Jeong, Chan-Mo;Seo, Seung-U
    • Journal of Dental Rehabilitation and Applied Science
    • /
    • v.27 no.1
    • /
    • pp.51-61
    • /
    • 2011
  • Recently, restoring implants in the esthetically demanding region, zirconia-based materials are widely used due to their superior mechanical properties, accuracies, and esthetics. The purpose of this study was to investigate the load transfer and mechanical stability of zirconia and titanium implant abutments by using the three-dimensional finite element analysis model. The internal conical joint type and external butt joint type implant system was selected as an experimental model. Finite element models of bone/implant/prosthesis complex were constructed. An load of 250N was applied vertically beside 3mm of implant axis. Stress distribution of zirconia and titanium implant abutment is similar. The maximum equivalent stress of titanium implant abutment is lower than zirconia implant abutment about 15%. Howevere considering a high mechanical strength that exceed those of titanium implant abutment, zirconia implant abutment had similar mechanical stability of titanium implant abutment clinically.

The Analysis about Work Value of Undergraduates According to Major and Gender: In Focus of Engineering and Social Science Department (전공과 성별에 따른 대학생들의 직업가치관 분석: 공학 및 사회과학 계열을 중심으로)

  • Lee, Yong Kil;Kang, Kyung Hee
    • Journal of Engineering Education Research
    • /
    • v.16 no.1
    • /
    • pp.27-34
    • /
    • 2013
  • The purpose of this study is to analyze work values of undergraduates according to major and gender. The result of this research is following. First, undergraduates from engineering and social science department took a very serious view of achievement and leasure of body and mind in work values. Second, undergraduates made much of achievement, job stability, leasure of body and mind, economic compensation and reputation. And undergraduates thought that internal value orientation was more important than external value orientation. Third, two groups had significant difference in service, knowledge pursuit, patriotism, economic compensation, reputation, and indoor activity. Fourth, the result of this analysis according to gender is following. Male undergraduates made much of leasure of body and mind, achievement, job stability, knowledge pursuit, and economic compensation in order. But female undergrduates made much of economic compesation, leasure of body and mind, achievement, and job stability in order. Fifth, that undergraduates make little of domain of service and patriotism gives a suggestion as to improvement of course education. As a result, this study is suggestive of instruction and advice in course search curriculum.

Application of Finite Element Analysis for Structural Stability Evaluation of Modern and Contemporary Sculptures: 'Eve 58-1' by Man Lin Choi

  • Kwon, Hee Hong;Shin, Jeong Ah;Cho, Nam Chul
    • Journal of Conservation Science
    • /
    • v.38 no.4
    • /
    • pp.277-288
    • /
    • 2022
  • 'Eve 58-1', the subject of this study is a statue made of plaster and its structural stability was evaluated by utilizing the CAE program in order to prevent the risk of damage arising from impact and vibration that are generated during the packaging and transportation process given its material characteristics. CAE is an abbreviation for Computer Applied Engineering for realization by predicting changes at the time of application of virtual physical energy. It is applied by reflecting the physical property conditions and each boundary condition of plaster, and the digital images of the internal and external structure of the work were acquired through 3D scanning and CT analysis for interpretation by executing finite element modeling. When acceleration is applied to the work in the direction of its own weight, the left-right side and the front-rear side, it was possible to confirm a maximum displacement value of 15.24 mm in the head section of the front-rear side direction that has been tilted by approximately 27° from the Y-axis and the largest stress value of 12.46 MPa was at the left ankle section. The corresponding results confirmed that the left ankle section is the most vulnerable area and the section for which precautions need to be exercised and supplemented at the time of transporting the work by means of objective values.

Comparison of Abdominal Muscle Thickness Using Ultrasound Imaging During Bridging Exercises With a Sling and Ball in Healthy Young Adults

  • Moon, Young;Choi, Jong-duk
    • Physical Therapy Korea
    • /
    • v.27 no.1
    • /
    • pp.87-92
    • /
    • 2020
  • Background: Bridging exercises are used to enhance the functional stability of the lumbopelvic region in clinical settings. Although most of the studies on bridging exercises have compared the complete activation of the trunk muscles, some recent studies have examined the functional stability of the trunk and the lumbopelvic region and assessed the appropriate recruitment of the local and global muscles during different task levels. Objects: The purpose of this study was to investigate the changes in muscle thickness in the transverse abdominis (TrA), internal oblique (IO), and external oblique (EO) muscles during a common bridging exercise on an unstable surface and to determine whether these changes differ based on the surface used. Methods: Twenty-five healthy young adults (8 males, 17 females) were recruited. The subjects were randomly assigned to either the exercise progression with a sling bridge group or the ball bridging exercise progression group, each with three stages of increasing difficulty. Each position was measured three times with an ultrasonic diagnostic imaging system, and the mean values were recorded for analysis. Results: No significant differences were observed between the TrA, IO, or EO muscle thickness ratios between the sling and ball exercise groups (p > 0.05). There were also no significant differences in the EO muscle thickness ratios between the tasks irrespective of whether the sling or ball was used. However, the TrA and IO thickness ratios in both groups were significantly greater during stages 2 and 3 compared to stage 1. Conclusion: The results suggest that the use of slings and balls during bridging exercises is effective in activating the deep abdominal muscles.

Optimum Design of a Helicopter Tailrotor Driveshaft Using Flexible Matrix Composite (유연복합재를 이용한 헬리콥터 꼬리날개 구동축의 최적 설계)

  • Shin, Eung-Soo;Hong, Eul-Pyo;Lee, Kee-Nyeong;Kim, Ock-Hyun
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.28 no.12
    • /
    • pp.1914-1922
    • /
    • 2004
  • This paper provides a comprehensive study of optimum design of a helicopter tailrotor driveshaft made of the flexible matrix composites (FMCs). Since the driveshaft transmits power while subjected to large bending deformation due to aerodynamic loadings, the FMCs can be ideal for enhancing the drivetrain performance by absorbing the lateral deformation without shaft segmentation. However, the increased lateral flexibility and high internal damping of the FMCs may induce whirling instability at supercritical operating conditions. Thus, the purpose of optimization in this paper is to find a set of tailored FMC parameters that compromise between the lateral flexibility and the whirling stability while satisfying several criteria such as torsional buckling safety and the maximum shaft temperature at steadystate conditions. At first, the drivetrain was modeled based on the finite element method and the classical laminate theory with complex modulus approach. Then, an objective function was defined as a combination of an allowable bending deformation and external damping and a genetic algorithm was applied to search for an optimum set with respect to ply angles and stack sequences. Results show that an optimum laminate consists of two groups of layers: (i) one has ply angles well below 45$^{\circ}$ and the other far above 45$^{\circ}$ and (ii) the number of layers with low ply angles is much bigger than that with high ply angles. It is also found that a thick FMC shaft is desirable for both lateral flexibility and whirling stability. The genetic algorithm was effective in converging to several local optimums, whose laminates exhibit similar patterns as mentioned above.

Comparison of implant stability measurements between a resonance frequency analysis device and a modified damping capacity analysis device: an in vitro study

  • Lee, Jungwon;Pyo, Se-Wook;Cho, Hyun-Jae;An, Jung-Sub;Lee, Jae-Hyun;Koo, Ki-Tae;Lee, Yong-Moo
    • Journal of Periodontal and Implant Science
    • /
    • v.50 no.1
    • /
    • pp.56-66
    • /
    • 2020
  • Purpose: A stability-measuring device that utilizes damping capacity analysis (DCA) has recently been introduced in the field of dental implantology. This study aimed to evaluate the sensitivity and reliability of this device by measuring the implant stability of ex vivo samples in comparison with a resonance frequency analysis (RFA) device. Methods: Six implant beds were prepared in porcine ribs using 3 different drilling protocols to simulate various implant stability conditions. Thirty-six pork ribs and 216 bone-level implants measuring 10 mm in height were used. The implant beds were prepared using 1 of the following 3 drilling protocols: 10-mm drilling depth with a 3.5-mm-diameter twist drill, 5-mm drilling depth with a 4.0-mm-diameter twist drill, and 10-mm drilling depth with a 4.0-mm-diameter twist drill. The first 108 implants were external-connection implants 4.0 mm in diameter, while the other 108 implants were internal-connection implants 4.3 mm in diameter. The peak insertion torque (PIT) during implant placement, the stability values obtained with DCA and RFA devices after implant placement, and the peak removal torque (PRT) during implant removal were measured. Results: The intraclass correlation coefficients (ICCs) of the implant stability quotient (ISQ) results obtained using the RFA device at the medial, distal, ventral, and dorsal points were 0.997, 0.994, 0.994, and 0.998, respectively. The ICCs of the implant stability test (IST) results obtained using the DCA device at the corresponding locations were 0.972, 0.975, 0.974, and 0.976, respectively. Logarithmic relationships between PIT and IST, PIT and ISQ, PRT and IST, and PRT and ISQ were observed. The mean absolute difference between the ISQ and IST values on a Bland-Altman plot was -6.76 (-25.05 to 11.53, P<0.05). Conclusions: Within the limits of ex vivo studies, measurements made using the RFA and DCA devices were found to be correlated under a variety of stability conditions.

A Case Study of The Collapsed Reinforced-Soil Retaining Wall (보강토옹벽의 사고사례에 관한 연구)

  • Yoo, Chung-Sik;Jung, Hyuk-Sang;Lee, Soung-Woo
    • Journal of the Korean Geosynthetics Society
    • /
    • v.3 no.2
    • /
    • pp.13-21
    • /
    • 2004
  • This paper deal with the analysis of the causes about case of collapsed reinforced-soil retaining wall. The analysis of the cause was carried through experimentation, slop stability analysis and literature study. The experimentation treated the large direct shear test, the hydraulic conductivity test and the other basic test through backfill extraction from collapsed reinforced-soil retaining wall. The ultimate tensile strength was established by rib tensile strength test of geogrid. The analysis of internal and external stability of reinforced-soil retaining wall was performed on the basis of parameters. The result of analysis, reinforced-soil retaining wall and the slope at the dry season are stable. However, the factors that fine-grained soil at hydrometer test exceed the standard of the design, rainfall duration is too long at the time of collapse and monthly pricipitation is heavy, which are causes of the collapse.

  • PDF