• Title/Summary/Keyword: External Water Level

Search Result 137, Processing Time 0.026 seconds

A Study on the Decision for External Water Level of a River Considering Sea Level Rise (해수면 상승을 고려한 하천 외수위 결정에 관한 연구)

  • Choo, Tai Ho;Yun, Gwan Seon;Kwon, Yong Been;Ahn, Si Hyung;Kim, Jong Gu
    • The Journal of the Korea Contents Association
    • /
    • v.16 no.4
    • /
    • pp.604-613
    • /
    • 2016
  • The sea level of the Earth is rising approximately 2.0mm per year (global average value) due to thermal expansion of sea water, melting of glaciers and other causes by global warming. However, when it comes to design a river, the standard of design water level is decided by analyzing four largeness tide value and harmonic constant with observed tidal water level. Therefore, it seems the external water level needs to consider an increasing speed of the seawater level which corresponds to a design frequency. In the present study, the hourly observed tidal water level targeting 47 tidal stations operated by Korea Hydrographic and Oceanographic Administration (KHOA) from beginning of observation to 2015 per hour has been collected. The variation of monthly and yearly and increasing ratio have been performed divided 4 seas such as the Southern, East, Western, and Jeju Sea. Also, the external water level existing design for rivers nearby a coast was been reviewed. The current study could be used to figure out the cause of local seawater rise and reflect the external water level as basic data.

Natural Circulation Flow Investigation in a Rectangular Channel (사각 단면 채널에서의 자연순환 유동에 관한 연구)

  • Ha, Kwang-Soon;Kim, Jae-Cheol;Park, Rae-Joon;Kim, Sang-Baik;Hong, Seong-Wan
    • Proceedings of the KSME Conference
    • /
    • 2007.05b
    • /
    • pp.3086-3091
    • /
    • 2007
  • When a molten corium is relocated in a lower head of a reactor vessel, the ERVC (External Reactor Vessel Cooling) system is actuated as coolant is supplied into a reactor cavity to remove a decay heat from the molten corium during a severe accident. To achieve this severe accident mitigation strategy, the two-phase natural circulation flow in the annular gap between the external reactor vessel and the insulation should be formed sufficiently by designing the coolant inlet/outlet area and gap size adequately on the insulation device. For this reason, one-dimensional natural circulation flow tests were conducted to estimate the natural circulation flow under the ERVC condition of APR1400. The experimental facility is one-dimensional and scaled-down as the half height and 1/238 rectangular channel area of the APR1400 reactor vessel. As the water inlet area increased, the natural circulation mass flow rate asymptotically increased, that is, it converged at a specific value. And the circulation mass flow rate also increased as the outlet area, injected air flow rate, and outlet height increased. But the circulation mass flow rate was not changed along with the external water level variation if the water level was higher than the outlet height.

  • PDF

Design of Multipurpose Phantom for External Audit on Radiotherapy

  • Lim, Sangwook
    • Progress in Medical Physics
    • /
    • v.32 no.4
    • /
    • pp.122-129
    • /
    • 2021
  • Purpose: This study aimed to design a multipurpose dose verification phantom for external audits to secure safe and optimal radiation therapy. Methods: In this study, we used International Atomic Energy Agency (IAEA) LiF powder thermoluminescence dosimeter (TLD), which is generally used in the therapeutic radiation dose assurance project. The newly designed multipurpose phantom (MPP) consists of a container filled with water, a TLD holder, and two water-pressing covers. The size of the phantom was designed to be sufficient (30×30×30 cm3). The water container was filled with water and pressed with the cover for normal incidence to be fixed. The surface of the MPP was devised to maintain the same distance from the source at all times, even in the case of oblique incidence regardless of the water level. The MPP was irradiated with 6, 10, and 15 MV photon beams from Varian Linear Accelerator and measured by a 1.25 cm3 ionization chamber to get the correction factors. Monte Carlo (MC) simulation was also used to compare the measurements. Results: The result obtained by MC had a relatively high uncertainty of 1% at the dosimetry point, but it showed a correction factor value of 1.3% at the 5 cm point. The energy dependence was large at 6 MV and small at 15 MV. Various dosimetric parameters for external audits can be performed within an hour. Conclusions: The results allow an objective comparison of the quality assurance (QA) of individual hospitals. Therefore, this can be employed for external audits or QA systems in radiation therapy institutions.

External mechanisms driving ecosystem changes in a coastal wetland, the Mississippi Delta, USA

  • Ryu, Junghyung;Liu, Kam-biu;McCloskey, Terrence A.;Yun, Sang-Leen
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2022.05a
    • /
    • pp.85-85
    • /
    • 2022
  • The world's most extensive and active deltas, Louisiana's wetlands, are deteriorating rapidly due to multiple stressors such as the discharge of the Mississippi River, sea-level rise, and coastal retreat, the substantial but spatially and temporally variable impacts. However, the ecological and anthropogenic histories, the mode of environmental changes on a multi-millennial timescale have not been thoroughly documented. This study, a palynology-based multiproxy analysis, investigates hydrological, geological, geochemical, and anthropogenic impacts on southern Louisiana wetlands and a variety of external forcing agents influencing ecological succession. Sediment cores extracted from a small pond on a mangrove-dominate island near Port Fourchon, Louisiana, USA yielded a 4,000-year record. The site has been transformed from freshwater to saline water environments, to a mangrove dominant island over the late Holocene. The multivariate principal component analysis identified the relative strength of external drivers responsible for each ecological shift. The Mississippi River delta cycle (lobe switching) was the dominant driver of ecosystem changes during the late Holocene, while relative sea-level rise, tropical cyclones, climate, and anthropogenic effects have been the main drivers late in the site's history.

  • PDF

Storm Surge Caused by the Typhoon in Kwangyang Port (광양항에서의 폭풍해일 검토)

  • Kim, Hyeon-Seong;Im, Hyo-Hyuc;Han, Dong-Hoon;Kim, Pyeong-Joong
    • Proceedings of the Korean Society of Marine Engineers Conference
    • /
    • 2006.06a
    • /
    • pp.205-206
    • /
    • 2006
  • The surges caused by the typhoon of Korea are analysed in Kwangyang Bay. The deviations of the high water level were $74{\sim}185cm$ and the maximum deviations of the water level (maximum surges) were $151{\sim}240cm$ in Kwangyang Bay during the typhoon. The major parameters of the maximum deviations of the water level are as follows : Analysis shows that the pressure drop increased the sea level by $43{\sim}59cm$, the flood of the Sumjin River by $4{\sim}5cm$ and the external surge propagation and wind setup by $97{\sim}192cm$.

  • PDF

One-Dimensional Analysis of Air-Water Two Phase Natural Circulation Flow (공기와 물의 이상 자연순환 유동의 1 차원 해석)

  • Park, Rae-Joon;Ha, Kwang-Soon;Kim, Jae-Cheol;Hong, Seong-Wan;Kim, Sang-Baik
    • Proceedings of the KSME Conference
    • /
    • 2007.05b
    • /
    • pp.2626-2631
    • /
    • 2007
  • Air-water two phase natural circulation flow in the T-HERMES (Thermo-Hydraulic Evaluation of Reactor cooling Mechanism by External Self-induced flow)-1D experiment has been evaluated to verify and evaluate the experimental results by using the RELAP5/MOD3 computer code. The RELAP5 results have shown that an increase in the coolant inlet area leads to an increase in the water circulation mass flow rate. However, the water outlet area does not effective on the water circulation mass flow rate. As the coolant outlet moves to a lower position, the water circulation mass flow rate decreases. The water level is not effective on the water circulation mass flow rate. As the height increases in the air injection part, the void fraction increases. However, the void fraction in the upper part of the air injector maintains a constant value. An increase in the air injection mass flow rate leads to an increase in the local void fraction, but it is not effective on the local pressure.

  • PDF

Analysis on inundation characteristics by compound external forces in coastal areas (연안 지역의 복합 외력에 의한 침수 특성 분석)

  • Kang, Taeuk;Sun, Dongkyun;Lee, Sangho
    • Journal of Korea Water Resources Association
    • /
    • v.54 no.7
    • /
    • pp.463-474
    • /
    • 2021
  • The various external forces can cause inundation in coastal areas. This study is to analyze regional characteristics caused by single or compound external forces that can occur in coastal areas. Storm surge (tide level and wave overtopping) and rainfall were considered as the external forces in this study. The inundation analysis were applied to four coastal areas, located on the west and south coast in Republic of Korea. XP-SWMM was used to simulate rainfall-runoff phenomena and 2D ground surface inundation for watershed. A coupled model of ADCIRC and SWAN (ADCSWAN) was used to analyze tide level by storm surge and the FLOW-3D model was used to estimate wave overtopping. As a result of using a single external force, the inundation influence due to storm surge in most of the coastal areas was greater than rainfall. The results of using compound external forces were quite similar to those combined using one external force independently. However, a case of considering compound external forces sometimes created new inundation areas that didn't appear when considering only a single external force. The analysis considering compound external forces was required to reduce inundation damage in these areas.

Numerical Simulation of Internal-External Wave Field Interaction in Permeable Coastal Structures (투과성 해안구조물 내-외부 파동장의 수리특성에 관한 순치모의)

  • Cha, Jong-Ho;Yoon, Han-Sam;Ryu, Cheong-Ro;Kang, Yoon-Koo
    • Journal of Ocean Engineering and Technology
    • /
    • v.22 no.3
    • /
    • pp.18-23
    • /
    • 2008
  • This study investigated interactions between the internal-external wave field of a permeable coastal structure consisting of rubble. The study examined the application criteria of an existing numerical model (CADMAS-SURF V.4.0) and proposed a modified method to provide reasonable results. In particular, the study focused on and emphasized the water surface profiles in front of a structure, wave run-up/run-down on a slope, and internal water level fluctuations due to the drag coefficient and porosity of a rubble mound structure. In conclusion, the result show that when the vertical fluctuations of the internal water levels in permeable coastal structures exhibited high-quality representation. Sane responses can be seen for wave run-up/run-down characteristics on its slopes.

A Study on Stability of Marine Embankment Using Reliability Analysis (신뢰성해석을 이용한 호안제체의 안정성에 관한 연구)

  • 박준모;장연수;오세웅
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2003.03a
    • /
    • pp.789-796
    • /
    • 2003
  • A reliability analysis is performed to investigate the influence of the uncertainty from the limited in-situ samples and the inherent heterogeneity of the ground on the probability of piping for the marine embankment near shore. The result are compared with those of the deterministic piping stability analysis performed using the fininte element flow analysis. The random variables used are hydraulic conductivity of the ground subsurface and embankment, and the water level of both internal and external side of the embankment. The probability of piping is most sensitive to the mean and standard deviation of internal water level of the embankment among the random variables included in the reliability analysis. It is found that the lower limits of internal water level which satisfies the allowable proability of piping failure for the embankment studied were E.L(-) 1.83m and E.L(-) 1.48m during and after the construction of the embankment, respectively.

  • PDF

A Basic Study on the Water Level Limit Sensor Utilizing Acoustic Impedance Matching (음향임피던스 정합을 이용한 액면레벨 리미트 센서의 기초연구)

  • Kim, Cheol-Han;Lee, Su-Ho;SaGong, Geon;Lee, Jun-Hee
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2005.07a
    • /
    • pp.352-353
    • /
    • 2005
  • In this paper, an ultrasonic level limit sensor with a new structure utilizing the acoustic impedance matching is proposed to be able to check it out a change of water-level. 2 PZT resonators with the same property are bonded directly on the polyethylene plate. One is for transmitter as an ultrasonic transducer, the other one is for receiver. In this case, a polyethylene plate will operate as an acoustic guider to transmit a transverse wave between 2 PZT resonators in air. While in the water, a polyethylene plate having a similar acoustic impedance with the water will be emitted an acoustic energy into the water as a longitudinal wave. According to this mechanism, there was a wide difference of acoustic signal output between underwater and in air. As a summary, it is believed that this proposed level limit sensor could be used as a new one with strong toughness from the external electrical and mechanical noise.

  • PDF