• Title/Summary/Keyword: External Validation

Search Result 205, Processing Time 0.024 seconds

Dynamic Model Prediction and Validation for Free-Piston Stirling Engines Considering Nonlinear Load Damping (자유피스톤 스털링 엔진의 비선형 부하 감쇠를 고려한 동역학 모델 예측 및 검증)

  • Sim, Kyuho;Kim, Dong-Jun
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.39 no.10
    • /
    • pp.985-993
    • /
    • 2015
  • Free-piston Stirling engines (FPSEs) have attracted much attention in the renewable energy field as a key device in the conversion from thermal to mechanical energy, and in the recycling of waste energy. Traditional Stirling engines consist of two pistons that are connected by a mechanical link, while FPSEs are formed as a vibration system by connecting each piston to a spring without a physical link. To ensure the correct design and control of operations, this requires elaborate dynamic-performance predictions. In this paper, we present the performance-prediction methodology using a linear and nonlinear dynamic analytical model considering the external load of FPSEs. We perform linear analyses to predict the operating point of the engine using the root locus technique. Using nonlinear analysis, we also predict the amplitude of pistons by performing numerical integration considering both the linear and nonlinear damping terms of the external load. We utilize the predicted dynamic behavior to predict the engine performance. In addition, we compare the experiment results and existing model predictions for RE-1000 to verify the reliability of the analytical model.

An Electric Load Forecasting Scheme with High Time Resolution Based on Artificial Neural Network (인공 신경망 기반의 고시간 해상도를 갖는 전력수요 예측기법)

  • Park, Jinwoong;Moon, Jihoon;Hwang, Eenjun
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.6 no.11
    • /
    • pp.527-536
    • /
    • 2017
  • With the recent development of smart grid industry, the necessity for efficient EMS(Energy Management System) has been increased. In particular, in order to reduce electric load and energy cost, sophisticated electric load forecasting and efficient smart grid operation strategy are required. In this paper, for more accurate electric load forecasting, we extend the data collected at demand time into high time resolution and construct an artificial neural network-based forecasting model appropriate for the high time resolution data. Furthermore, to improve the accuracy of electric load forecasting, time series data of sequence form are transformed into continuous data of two-dimensional space to solve that problem that machine learning methods cannot reflect the periodicity of time series data. In addition, to consider external factors such as temperature and humidity in accordance with the time resolution, we estimate their value at the time resolution using linear interpolation method. Finally, we apply the PCA(Principal Component Analysis) algorithm to the feature vector composed of external factors to remove data which have little correlation with the power data. Finally, we perform the evaluation of our model through 5-fold cross-validation. The results show that forecasting based on higher time resolution improve the accuracy and the best error rate of 3.71% was achieved at the 3-min resolution.

An Exploratory Study on the Relationship between External Causes of Injuries and Regional Safety Grade among Geriatric Injury Patients (노인 손상환자의 손상외인과 지역안전등급 간 관계에 관한 탐색적 연구)

  • Lee, Jeong-Wook
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.17 no.9
    • /
    • pp.472-482
    • /
    • 2016
  • The purpose of this study was to determine if a geriatric injury would have a statistically significant relationship with the spatial safety within a specific region. To achieve the objectives of this study, an independent sample t-test and One-way ANOVA were performed to verify difference in mean value of regional safety grade, depending on the injury intentionality, injury location, activities at the time of injury, and injury mechanism, in 6,572 geriatric injury patients by combining the National Hospital Discharge Patients Injury Survey data and regional safety index data. The results of statistical validation suggested that there was no difference in the mean value of regional safety grade by sub-group with respect to the injury intentionality. However, a statistically significant difference was observed in terms of the mean value of regional safety grade in each sub-group with regard to the injury location, activities at the time of injury, and injury mechanism in connection with some areas of the regional safety index. Based on the results of such analysis, we derived and presented 3 implications related to policies and practice for the prevention of geriatric injury and a reduction of its occurrence rate in light of spatial safety after a discussion of the results through a comparison with previous studies that examined individual areas.

Inferring Pedestrian Level of Service for Pathways through Electrodermal Activity Monitoring

  • Lee, Heejung;Hwang, Sungjoo
    • International conference on construction engineering and project management
    • /
    • 2022.06a
    • /
    • pp.1247-1248
    • /
    • 2022
  • Due to rapid urbanization and population growth, it has become crucial to analyze the various volumes and characteristics of pedestrian pathways to understand the capacity and level of service (LOS) for pathways to promote a better walking environment. Different indicators have been developed to measure pedestrian volume. The pedestrian level of service (PLOS), tailored to analyze pedestrian pathways based on the concept of the LOS in transportation in the Highway Capacity Manual, has been widely used. PLOS is a measurement concept used to assess the quality of pedestrian facilities, from grade A (best condition) to grade F (worst condition), based on the flow rate, average speed, occupied space, and other parameters. Since the original PLOS approach has been criticized for producing idealistic results, several modified versions of PLOS have also been developed. One of these modified versions is perceived PLOS, which measures the LOS for pathways by considering pedestrians' awareness levels. However, this method relies on survey-based measurements, making it difficult to continuously deploy the technique to all the pathways. To measure PLOS more quantitatively and continuously, researchers have adopted computer vision technologies to automatically assess pedestrian flows and PLOS from CCTV videos. However, there are drawbacks even with this method because CCTVs cannot be installed everywhere, e.g., in alleyways. Recently, a technique to monitor bio-signals, such as electrodermal activity (EDA), through wearable sensors that can measure physiological responses to external stimuli (e.g., when another pedestrian passes), has gained popularity. It has the potential to continuously measure perceived PLOS. In their previous experiment, the authors of this study found that there were many significant EDA responses in crowded places when other pedestrians acting as external stimuli passed by. Therefore, we hypothesized that the EDA responses would be significantly higher in places where relatively more dynamic objects pass, i.e., in crowded areas with low PLOS levels (e.g., level F). To this end, the authors conducted an experiment to confirm the validity of EDA in inferring the perceived PLOS. The EDA of the subjects was measured and analyzed while watching both the real-world and virtually created videos with different pedestrian volumes in a laboratory environment. The results showed the possibility of inferring the amount of pedestrian volume on the pathways by measuring the physiological reactions of pedestrians. Through further validation, the research outcome is expected to be used for EDA-based continuous measurement of perceived PLOS at the alley level, which will facilitate modifying the existing walking environments, e.g., constructing pathways with appropriate effective width based on pedestrian volume. Future research will examine the validity of the integrated use of EDA and acceleration signals to increase the accuracy of inferring the perceived PLOS by capturing both physiological and behavioral reactions when walking in a crowded area.

  • PDF

QSPR analysis for predicting heat of sublimation of organic compounds (유기화합물의 승화열 예측을 위한 QSPR분석)

  • Park, Yu Sun;Lee, Jong Hyuk;Park, Han Woong;Lee, Sung Kwang
    • Analytical Science and Technology
    • /
    • v.28 no.3
    • /
    • pp.187-195
    • /
    • 2015
  • The heat of sublimation (HOS) is an essential parameter used to resolve environmental problems in the transfer of organic contaminants to the atmosphere and to assess the risk of toxic chemicals. The experimental measurement of the heat of sublimation is time-consuming, expensive, and complicated. In this study, quantitative structural property relationships (QSPR) were used to develop a simple and predictive model for measuring the heat of sublimation of organic compounds. The population-based forward selection method was applied to select an informative subset of descriptors of learning algorithms, such as by using multiple linear regression (MLR) and the support vector machine (SVM) method. Each individual model and consensus model was evaluated by internal validation using the bootstrap method and y-randomization. The predictions of the performance of the external test set were improved by considering their applicability to the domain. Based on the results of the MLR model, we showed that the heat of sublimation was related to dispersion, H-bond, electrostatic forces, and the dipole-dipole interaction between inter-molecules.

Measuring the Effects of Value, Customer Satisfaction and Loyalty on Tourists' Behavioral Intention for Restaurants in Icheon Area (이천 지역 음식점에 대한 관광객 행동 의도에 미치는 가치, 고객 만족과 충성도의 영향 평가)

  • Lee, Jae-Kon
    • Culinary science and hospitality research
    • /
    • v.15 no.4
    • /
    • pp.187-199
    • /
    • 2009
  • The objective of the research is to investigate the causal relationships among functional value, emotional value, social value, perceived sacrifice, satisfaction, loyalty and behavioral intention. All in all, 296 respondents completed a questionnaire themselves in the presence of an interviewer who could be consulted about the response scales and other technical matters. Behavioral intention models were estimated by structural equation modelling using 7 latent constructs. The results demonstrated that the confirmatory factor analysis model provided a good model fit. The unconstrained model yielded a significantly better fit to the data than the constraint model. The effects of functional value and social value on satisfaction and behavioral intention were statistically significant. The effects of perceived sacrifice, satisfaction and loyalty on behavioral intention were statistically significant. As expected, satisfaction had a significant effect on loyalty. Functional value had an indirect effect on behavioral intention through satisfaction and loyalty. Moreover, social value had an indirect effect on behavioral intention through satisfaction and loyalty. Replicating and extending this study in other regions and other samples would test the generalizability of the present findings and provide a basis for an external validation of the framework developed in this paper.

  • PDF

A Project Delivery System Selection Model for Large Public Construction Projects (대형 공공공사의 적정 발주방식 선정모델)

  • Hyun Chang-Taek;Seo Yong-Chil;Lee In-Keun;Ryu Kil-Sang;Lee Seong-Seok
    • Korean Journal of Construction Engineering and Management
    • /
    • v.1 no.2 s.2
    • /
    • pp.71-80
    • /
    • 2000
  • Project delivery systems determine the relationship, responsibility, authority and the scope of works of those involved in project, hence, optimum project delivery system should be selected to so that construction project would be executed successfully, Until now, the traditional design-bid-build mainly has been used for public projects, but the government is making efforts actively to introduce other methods such as design-build, alternative bidding by its policy. However, delivery systems should be determined through considering physical projects characteristics, owner's goals, external factors, etc, rather than government' policy. Therefore, the purpose of this research is to propose objective delivery system selection criteria and delivery system selection model, which help owners to select the suitable delivery system through quantitative and reasonable manner.

  • PDF

Determination of the Elbow Transverse Joint Using the Helical Axis Concept and its Application to the Development of a Kinematic Arm Model (나선축 개념을 이용한 팔꿈치 관절의 3차원 회전축 측정과 측정 결과를 반영한 인체 팔 모델의 개발)

  • Woo, Bum-Young;Jung, Eui-S.;Yun, Myung-Hwan
    • Journal of Korean Institute of Industrial Engineers
    • /
    • v.26 no.1
    • /
    • pp.73-80
    • /
    • 2000
  • To determine the exact direction and location of the human joint in motion is crucial in developing a more accurate human model and producing a more fitting artificial joint. There have been several reports on the biomechanical analysis of the joint to determine the anatomy and movement of joints. However, all the previous researches were made in vitro study, that is, they investigated the passive movement of the joint from cadavers and the suggested location of the joint axis was difficult to make practical applications due to the lack of the direction of joint axis. Also, in many biomechanical models, each joint axis is assumed to lie horizontally or vertically to the adjacent links. Such an assumption causes inherent inaccuracy. In this study, the direction and location of the transverse elbow axis was obtained with respect to the global coordinate system whose origin is on the lateral epicondyle of the humerus. The suggested result based on the global coordinate system lying on the external landmark will be helpful to understand the information of the axis and to make an application. From the experiments conducted for five subjects, the direction and location of the elbow transverse joint was determined for each subject by the helical axis method. A statistical validation was also performed to confirm the result. Finally, the result was applied to develop a simple elbow model which is a part of the kinematic arm model. The simple elbow movement model was developed to validate the significance of the result and the kinematic arm model was able to describe the geometry of any complex linkage system. As a result, the errors incurred from the proposed model were significantly reduced when compared to the ones from the previous approach.

  • PDF

Detection and Prevention of Bypassing Attack on VLAN-Based Network Segmentation Environment (VLAN을 이용한 네트워크 분할 환경에서의 네트워크 접근 제어 우회 공격 탐지 및 방어 기법)

  • Kim, Kwang-jun;Hwang, Kyu-ho;Kim, In-kyoung;Oh, Hyung-geun;Lee, Man-hee
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.28 no.2
    • /
    • pp.449-456
    • /
    • 2018
  • Many organizations divide the network to manage the network in order to prevent the leakage of internal data between separate organizations / departments by sending and receiving unnecessary traffic. The most fundamental network separation method is based on physically separate equipment. However, there is a case where a network is divided and operated logically by utilizing a virtual LAN (VLAN) network access control function that can be constructed at a lower cost. In this study, we first examined the possibility of bypassing the logical network separation through VLAN ID scanning and double encapsulation VLAN hopping attack. Then, we showed and implemented a data leak scenario by utilizing the acquired VLAN ID. Furthermore, we proposed a simple and effective technique to detect and prevent the double encapsulation VLAN hopping attack, which is also implemented for validation. We hope that this study improves security of organizations that use the VLAN-based logical network separation by preventing internal data leakage or external cyber attack exploiting double encapsulation VLAN vulnerability.

Modeling and validation of a parabolic solar collector with a heat pipe absorber

  • Ismail, Kamal A.R.;Zanardi, Mauricio A.;Lino, Fatima A.M.
    • Advances in Energy Research
    • /
    • v.4 no.4
    • /
    • pp.299-323
    • /
    • 2016
  • Cylindrical parabolic solar concentrators of small concentration ratio are attractive options for working temperatures around $120^{\circ}C$. The heat gained can be utilized in many applications such as air conditioning, space heating, heating water and many others. These collectors can be easily manufactured and do not need to track the sun continuously. Using a heat pipe as a solar absorber makes the system more compact and easy to install. This study is devoted to modeling a system of cylindrical parabolic solar concentrators of small concentration ratio (around 5) fitted with a heat pipe absorber with a porous wick. The heat pipe is surrounded by evacuated glass tube to reduce thermal losses from the heat pipe. The liquid and vapor flow equations, energy equation, the internal and external boundary conditions were taken into consideration. The system of equations was solved and the numerical results were validated against available experimental and numerical results. The validated heat pipe model was inserted in an evacuated transparent glass tube as the absorber of the cylindrical parabolic collector. A calculation procedure was developed for the system, a computer program was developed and tested and numerical simulations were realized for the whole system. An experimental solar collector of small concentration, fitted with evacuated tube heat pipe absorber was constructed and instrumented. Experiments were realized with the concentrator axis along the E-W direction. Results of the instantaneous efficiency and heat gain were compared with numerical simulations realized under the same conditions and reasonably good agreement was found.