• Title/Summary/Keyword: External Fault

Search Result 145, Processing Time 0.037 seconds

Effect of an External AC Magnetic field on Dynamic Resistance and Loss Characteristic in a Bi-2223 Tape (외부 교류자장이 Bi-2223테이프의 동저항 및 손실특성에 미치는 영향)

  • Ryu, Kyung-Woo;Choi, Byoung-Ju
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.18 no.5
    • /
    • pp.473-477
    • /
    • 2005
  • A Bi-2223 tape has been developed for power applications such as a fault current limiter, a power cable and a superconducting magnetic energy storage system. In such applications, the Bi-2223 tape carries time varying transport current and in addition experiences time varying external magnetic field. It is well known that the external magnetic field not only causes magnetization loss in the Bi-2223 tape, but also drastically increases transport loss due to a so-called 'dynamic resistance' We developed an evaluation setup, which can measure transport loss in external at magnetic fields. Using this equipment, we measured the dynamic resistances for various amplitudes and frequencies of an external at magnetic field perpendicular to the face in the tape. Simultaneously we investigated the effect of an external ac field on transport loss with different experimental conditions. This paper describes test results ana discussions on correlation between the dynamic resistance and the transport loss for the Bi-2223 tape.

Fault Tolerant Control of Hexacopter for Actuator Faults using Time Delay Control Method

  • Lee, Jangho;Choi, Hyoung Sik;Shim, Hyunchul
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.17 no.1
    • /
    • pp.54-63
    • /
    • 2016
  • A novel attitude tacking control method using Time Delay Control (TDC) scheme is developed to provide robust controllability of a rigid hexacopter in case of single or multiple rotor faults. When the TDC scheme is developed, the rotor faults such as the abrupt and/or incipient rotor faults are considered as model uncertainties. The kinematics, modeling of rigid dynamics of hexacopter, and design of stability and controllability augmentation system (SCAS) are addressed rigorously in this paper. In order to compare the developed control scheme to a conventional control method, a nonlinear numerical simulation has been performed and the attitude tracking performance has been compared between the two methods considering the single and multiple rotor faults cases. The developed control scheme shows superior stability and robust controllability of a hexacopter that is subjected to one or multiple rotor faults and external disturbance, i.e., wind shear, gust, and turbulence.

$100 A/mm^2$ Class Bi-2223 Tapes in Electromechanical Devices (전력기기에서 $100 A/mm^2$급 Bi-2223테이프)

  • 류경우;최경주;성기철;류강식
    • Progress in Superconductivity and Cryogenics
    • /
    • v.4 no.1
    • /
    • pp.55-60
    • /
    • 2002
  • $100 A/mm^2$ class Bi-2223 tapes have recently become commercially available. Some important characteristics of the tapes, e .g. critical current, ac loss, characteristics at joint, fault current characteristics, are required for an application such as a power cable or a power transformer. In this paper they have been investigated experimentally. The results indicate that the self-field loss of the high current density tapes is not negligible, compared to resistive loss in a copper wire for the same currents. In a cable, the self-field loss for relatively large currents is much larger than the magnetization loss due to an external field. But in a transformer, the magnetization loss is dominant, compared to the self-field loss. Finally the fault current characteristics show that the high current density tapes are never safe from burn-out even for fault currents with a few cycles.

Power Transformer Modeling and Transient Analysis using PSCAD (PSCAD를 이용한 전력용 변압기 모델링과 과도 해석)

  • Park, Chul-Won
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.65 no.2
    • /
    • pp.122-129
    • /
    • 2016
  • Current differential protection relaying with second harmonic restraint is the main protection for large capacity power transformer. PSCAD simulation program is widely used for modeling of dynamic varying transients phenomena. This paper deals with a power transformer model and transients analysis using PSCAD software to develop IED for power transformer. Simulation was carried out using a three phase 40MVA, 154/22.9kV, 60Hz, two-winding transformer with Y-Y connection used in actual fields. The paper analyzed transformer magnetizing inrush, external fault, and internal fault conditions with this model in the time domain. In addition, we performed an analysis in the frequency domain using FFT during several conditions.

Voltage-controlled Over-current Relay for Loop-connected Distributed Generators (환상형 분산전원 단지 보호를 위한 전압제어 과전류 계전기)

  • Kim, Tae-Hee;Kang, Sang-Hee
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.65 no.12
    • /
    • pp.1979-1985
    • /
    • 2016
  • A protection algorithm using a voltage-controlled overcurrent element for a looped collection circuit in a wind farm is suggested in this paper. Because the proposed algorithm uses voltage relaying signals as well as current relaying signals, any fault in the looped collection circuit can be cleared by voltage-controlled overcurrent relays located at the two adjacent relaying points, the nearest place in each direction from the fault point. The algorithm can also distinguish the external faults which occur at the outside of a wind farm from the internal faults. It means that the proposed algorithm can provide the proper ability of protection coordination to the relays in the looped collection circuits of a large wind farm. The performance of the proposed algorithm is verified under various fault conditions using PSCAD/EMTDC simulations.

Analysis on the Method of Forward-Reverse Fault localization of Electric Railways for the Improvement of Accuracy (전기철도 정역방향 고장점표정 방법을 통한 정확도 향상을 위한 연구)

  • Kim, Myeong Su;Kim, Seong Cheol
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.67 no.12
    • /
    • pp.1735-1742
    • /
    • 2018
  • The number of electric railway failures will increase due to the external and internal effects of electric railroads. The grounding test with 25,000V is to artificially test the transmission voltage to ground, and it is possible to cause risks of electric shock and other equipment insulation damage in neighboring enclosure. In 2016, method of fault localization changed to low - voltage at 380V from artificially high- voltage in the grounding tests since opening of Seoul Metropolitan Express Railway; The method is more accurate and safer rather than the previous one because it gets more data from unlimited grounding tests. However, an electric current falls on the track section where the track branches and vehicle bases with many lines. To precisely detect a transitive phenomenon, it is necessary to continuously study and additionally install.

40-TFLOPS artificial intelligence processor with function-safe programmable many-cores for ISO26262 ASIL-D

  • Han, Jinho;Choi, Minseok;Kwon, Youngsu
    • ETRI Journal
    • /
    • v.42 no.4
    • /
    • pp.468-479
    • /
    • 2020
  • The proposed AI processor architecture has high throughput for accelerating the neural network and reduces the external memory bandwidth required for processing the neural network. For achieving high throughput, the proposed super thread core (STC) includes 128 × 128 nano cores operating at the clock frequency of 1.2 GHz. The function-safe architecture is proposed for a fault-tolerance system such as an electronics system for autonomous cars. The general-purpose processor (GPP) core is integrated with STC for controlling the STC and processing the AI algorithm. It has a self-recovering cache and dynamic lockstep function. The function-safe design has proved the fault performance has ASIL D of ISO26262 standard fault tolerance levels. Therefore, the entire AI processor is fabricated via the 28-nm CMOS process as a prototype chip. Its peak computing performance is 40 TFLOPS at 1.2 GHz with the supply voltage of 1.1 V. The measured energy efficiency is 1.3 TOPS/W. A GPP for control with a function-safe design can have ISO26262 ASIL-D with the single-point fault-tolerance rate of 99.64%.

Analysis on the quenching characteristics of a superconducting fault current limiter with 2 by 3 matrixes ($2{\times}3$행렬구조를 갖는 초전도 한류기의 퀜치특성 분석)

  • Cho, Yong-Sun;Park, Hyoung-Min;Lee, Ju-Hyoung;Jung, Byung-Ik;Choi, Hyo-Sang
    • Proceedings of the KIEE Conference
    • /
    • 2008.07a
    • /
    • pp.2210-2211
    • /
    • 2008
  • In this paper, we investigated the quenching characteristics of a superconducting fault current limiter (SFCL) with connection of $2{\times}3$ matrixes. This SFCL consists of the trigger part to apply magnetic field and the current-limiting part to limit the fault current. When the fault occurs, the magnetic field generated in the reactor connected in parallel was applied to the two superconducting units of the current-limiting part to reduce of inhomogeneous critical current behavior between the superconducting units. The quenching behavior of a superconducting unit in the trigger part was affected by the increase of turn numbers. This is because of the difference of current distribution between the inductance of the reactors and the resistance generated in the superconducting units in trigger part. We confirmed that the voltage differences between two superconducting units of the current-limiting part were decreased. This is because of the improvement of inhomogeneous critical current behavior between the superconducting units according to the increase of external magnetic field.

  • PDF

Fault prediction of wind turbine and Generation benefit evaluation by using the SVM method (SVM방법을 이용한 풍력발전기 고장 예측 및 발전수익 평가)

  • Shin, Jun-Hyun;Lee, Yun-Seong;Kim, Sung-Yul;Kim, Jin-O
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.28 no.5
    • /
    • pp.60-67
    • /
    • 2014
  • Wind power is one of the fastest growing renewable energy sources. The blades length and tower height of wind turbine have been growing steadily in the last 10 years in order to increase the output amount of wind power energy. The amount of wind turbine energy is increased by increasing the capacity of wind turbine, but the costs of preventive, corrective and replacement maintenance are also increased accordingly. Recently, Condition Monitoring System that can repair the fault diagnose and repair of wind turbine in the real-time. However, these system have a problem that cannot predict and diagnose of the fault. In this paper, wind turbine predict methodology is proposed by using the SVM method. In the case study, correlation analysis between wind turbine fault and external environmental factors is performed by using the SVM method.

PDSO tuning of PFC-SAC fault tolerant flight control system

  • Alaimo, Andrea;Esposito, Antonio;Orlando, Calogero
    • Advances in aircraft and spacecraft science
    • /
    • v.6 no.5
    • /
    • pp.349-369
    • /
    • 2019
  • In the design of flight control systems there are issues that deserve special consideration and attention such as external perturbations or systems failures. A Simple Adaptive Controller (SAC) that does not require a-priori knowledge of the faults is proposed in this paper with the aim of realizing a fault tolerant flight control system capable of leading the pitch motion of an aircraft. The main condition for obtaining a stable adaptive controller is the passivity of the plant; however, since real systems generally do not satisfy such requirement, a properly defined Parallel Feedforward Compensator (PFC) is used to let the augmented system meet the passivity condition. The design approach used in this paper to synthesize the PFC and to tune the invariant gains of the SAC is the Population Decline Swarm Optimization ($P_DSO$). It is a modification of the Particle Swarm Optimization (PSO) technique that takes into account a decline demographic model to speed up the optimization procedure. Tuning and flight mechanics results are presented to show both the effectiveness of the proposed $P_DSO$ and the fault tolerant capability of the proposed scheme to control the aircraft pitch motion even in presence of elevator failures.