References
- T. Luo et al., DaDianNao: a neural network supercomputer, IEEE Trans. Comput. 66 (2017), no. 1, 73-88. https://doi.org/10.1109/TC.2016.2574353
- N. Jouppi et al., In-datacenter performance analysis of a tensor processing unit, in Proc. ACM/IEEE Annu. Int. Sym. Comput. Architecture (Toronto, Canada), June 2017, pp. 1-12.
- A. Parashar et al., SCNN: An accelerator for compressed-sparse convolutional neural networks, in Proc. ACM/IEEE Annu. Int. Symp. Comput. Architecture (Toronto, Canada), June 2017, pp. 27-40.
- K. Simonyan and A. Zisserman, Very deep convolutional networks for large-scale image recognition, in Proc. Int. Conf. Learn. Representations (San Diego, CA, US), May 2015.
- A. Krizhevsky et al., ImageNet classification with deep convolutional neural networks, Adv. Neural Inf. Process. Syst. 25 (2012), 1106-1114.
- J. Redmon et al., You only look once: unified, real-time object detection, in Proc. IEEE Conf. Comput. Vision Pattern Recogn. (Las Vegas, NV, USA), 2016, pp. 779-788.
- C. Szegedy et al., Going deeper with convolutions, ArXiv:1409.4842, 17th Sep 2014.
- P. Gupta, An Overview of NVIDIA's Autonomous Vehicles Platform, in Proc. HotChips (Cupertino, CA, USA), 2017.
- J. Choquette, O. Giroux, and D. Foley, Volta: Performance and Programmability, IEEE Micro 38 (2018), no. 2, 42-52. https://doi.org/10.1109/MM.2018.022071134
- P. Bannon et al., Compute and redundancy solution for the full self-driving computer, in Proc. 31th Hot Chips (Silicon Valley, CA, USA), 2019.
- ISO26262 2nd Edition: Road vehicles - Functional Safety, 2018.
- C. Takahashi et al., A 16nm FinFET Heterogeneous Nona-Core SoC Complying with ISO26262 ASIL-B: Achieving 10-7 Random Hardware Failures per Hour Reliability, in Proc. IEEE Int. Solid-State Circuits Conf. (San Francisco, CA, USA), 2016, pp. 80-81.
- Reliability data handbook, IEC TR 62380, 2004.
- ISO/PAS21448: Road vehicles - Safety of The Intended Functionality, 2019.
- Y. Kwon et al., Function-Safe Vehicle AI Processor with Nano Core-in-Memory Architecture, in Proc. IEEE Int. Conf. Artif. Intell. Circuits Syst. (Hsinchu, Taiwan), Mar. 2019, 127-131.
- A. Golander et al., Synchronizing Redundant Cores in a Dynamic DMR Multicore Architecture, IEEE Trans. Circuits Syst. II Exp. Briefs 56 (2009), no. 6, 474-478. https://doi.org/10.1109/TCSII.2009.2020930
- E. Rotenberg, AR-SMT: A Microarchitectural Approach to Fault Tolerance in Microprocessors, in Proc. Int. Symp. Fault-Tolerant Comput. (Madison, WI, USA), June 1999, pp. 84-91.
- M. Zhang et al., Reliable ultra-low-voltage cache design for many-core systems, IEEE Trans. Circuits Syst. II Exp. Briefs 59 (2010), no. 12, 858-862. https://doi.org/10.1109/TCSII.2012.2231013
- M. R. Kakoee et al., Variation-tolerant architecture for ultra low power shared-L1 processor clusters, IEEE Trans. Circuits Syst. II Exp. Briefs 59 (2012), no. 12, 927-931. https://doi.org/10.1109/TCSII.2012.2231039
- A. R. Alameldeen et al., Energy-efficient cache design using variable-strength error-correcting codes, in Proc. Annu. Int. Symp. Comput. Architecture (San Jose, CA, USA), June 2011, pp. 461-471.
- D. Rossi et al., Error correcting code analysis for cache memory high reliability and performance, in Proc. Design, Autom. Test Eur. (Grenoble, France), Mar 2011, pp. 1620-1625.
- A. Neale et al., Adjacent-MBU-Tolerant SEC-DED-TAEC-yAED Codes for Embedded SRAMs, IEEE Trans. Circuits Syst. II Exp. Briefs 62 (2015), no. 4, 387-391. https://doi.org/10.1109/TCSII.2014.2368262
- Y. Kwon et al., 80mW/MHz 0.68V ultra low-power variation-tolerant superscalar dual-core processor, IEIE Trans. Smart Process. Comput. 4 (2015), no. 2, 71-77. https://doi.org/10.5573/IEIESPC.2015.4.2.071
-
J. Han et al., 80
${\mu}m$ /MHz, 850MHz fault tolerant processor with fault monitor systems, J. Semiconductor Technol. Sci. 17 (2017), no. 5, 627-635. https://doi.org/10.5573/JSTS.2017.17.5.627 - J. Han et al., A fault tolerant cache system of automotive vision processor complying with ISO26262, IEEE Trans. Circuits Syst. II: Express Briefs 63 (2016), no. 12, 1146-1150. https://doi.org/10.1109/TCSII.2016.2620997
- J. Han, Y. Kwon, and H.-J. Yoo, A 1GHz fault tolerant processor with dynamic lockstep and self-recovering cache for ADAS SoC complying with ISO26262 in automotive electronics, in Proc. IEEE Asian Solid State Circuits Conf. (Seoul, Rep. of Korea), Nov. 2017, pp. 313-316.
-
H. Kimura et al., A 40 nm flash microcontroller with 0.80
${\mu}$ s field-oriented-control intelligent motor timer and functional safety system for next-generation EV/HEV, in Proc. IEEE Int. Solid-State Circuits Conf. (San Francisco, CA, USA), Feb. 2017, pp. 58-59. - R. Venkatasubramanian et al., A 16 nm 3.5B+ transistor >14TOPS 2-to-10W multicore SoC platform for automotive and embedded applications with integrated safety MCU, 512b vector VLIW DSP, embedded vision and imaging acceleration, in Proc. IEEE Int. Solid-State Circuits Conf. (San Francisco, CA, USA), Feb. 2020, pp. 52-54.
Cited by
- A Survey of Software-Defined Networks-on-Chip: Motivations, Challenges and Opportunities vol.12, pp.2, 2021, https://doi.org/10.3390/mi12020183
- 인공지능 프로세서 컴파일러 개발 동향 vol.36, pp.2, 2020, https://doi.org/10.22648/etri.2021.j.360204
- DiLO: Direct light detection and ranging odometry based on spherical range images for autonomous driving vol.43, pp.4, 2020, https://doi.org/10.4218/etrij.2021-0088
- SoC-Level Safety-Oriented Design Process in Electronic System Level Development Environment vol.30, pp.14, 2020, https://doi.org/10.1142/s0218126621502546