• 제목/요약/키워드: External Dose

검색결과 469건 처리시간 0.03초

Organ Dose Conversion Coefficients Calculated for Korean Pediatric and Adult Voxel Phantoms Exposed to External Photon Fields

  • Lee, Choonsik;Yeom, Yeon Soo;Griffin, Keith;Lee, Choonik;Lee, Ae-Kyoung;Choi, Hyung-do
    • Journal of Radiation Protection and Research
    • /
    • 제45권2호
    • /
    • pp.69-75
    • /
    • 2020
  • Background: Dose conversion coefficients (DCCs) have been commonly used to estimate radiation-dose absorption by human organs based on physical measurements of fluence or kerma. The International Commission on Radiological Protection (ICRP) has reported a library of DCCs, but few studies have been conducted on their applicability to non-Caucasian populations. In the present study, we collected a total of 8 Korean pediatric and adult voxel phantoms to calculate the organ DCCs for idealized external photon-irradiation geometries. Materials and Methods: We adopted one pediatric female phantom (ETRI Child), two adult female phantoms (KORWOMAN and HDRK Female), and five adult male phantoms (KORMAN, ETRI Man, KTMAN1, KTMAN2, and HDRK Man). A general-purpose Monte Carlo radiation transport code, MCNPX2.7 (Monte Carlo N-Particle Transport extended version 2.7), was employed to calculate the DCCs for 13 major radiosensitive organs in six irradiation geometries (anteroposterior, posteroanterior, right lateral, left lateral, rotational, and isotropic) and 33 photon energy bins (0.01-20 MeV). Results and Discussion: The DCCs for major radiosensitive organs (e.g., lungs and colon) in anteroposterior geometry agreed reasonably well across the 8 Korean phantoms, whereas those for deep-seated organs (e.g., gonads) varied significantly. The DCCs of the child phantom were greater than those of the adult phantoms. A comparison with the ICRP Publication 116 data showed reasonable agreements with the Korean phantom-based data. The variations in organ DCCs were well explained using the distribution of organ depths from the phantom surface. Conclusion: A library of dose conversion coefficients for major radiosensitive organs in a series of pediatric and adult Korean voxel phantoms was established and compared with the reference data from the ICRP. This comparison showed that our Korean phantom-based data agrees reasonably with the ICRP reference data.

Impact of Treatment Time on Chemoradiotherapy in Locally Advanced Cervical Carcinoma

  • Pathy, Sushmita;Kumar, Lalit;Pandey, Ravindra Mohan;Upadhyay, Ashish;Roy, Soumyajit;Dadhwal, Vatsla;Madan, Renu;Chander, Subhash
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제16권12호
    • /
    • pp.5075-5079
    • /
    • 2015
  • Background: Adverse effects of treatment prolongation beyond 8 weeks with radiotherapy for cervical cancer have been established. Clinical data also show that cisplatin increases the biologically effective dose of radiotherapy. However, there are no data on the effect of overall treatment time in patients with locally advanced cervical cancer treated with concomitant chemo-radiotherapy (CCRT) in an Indian population. The present study concerned the feasibility of concurrent chemotherapy and interspacing brachytherapy during the course of external radiotherapy to reduce the overall treatment time and compare the normal tissue toxicity and loco-regional control with a conventional schedule. Materials and Methods: Between January 2009 and March 2012 fifty patients registered in the Gynaecologic Oncology Clinic of Institute Rotary Cancer Hospital with locally advanced cervical cancer (FIGO stage IIB-IIIB) were enrolled. The patients were randomly allocated to treatment arms based on a computer generated random number. Arm I (n=25) treatment consisted of irradiation of the whole pelvis to a dose of 50 Gy in 27 fractions, and weekly cisplatin $40mg/m^2$. High dose rate intra-cavitary brachytherapy (HDR-ICBT) was performed after one week of completion of external beam radiotherapy (EBRT). The prescribed dose for each session was 7Gy to point A for three insertions at one week intervals. Arm II (n=25) treatment consisted of irradiation of the whole pelvis to a dose of 50 Gy in 27 fractions. Mention HDR-ICBT ICRT was performed after 40Gy and 7Gy was delivered to point A for three insertions (days 23, 30, 37) at one week intervals. Cisplatin $20mg/m^2/day$ was administered from D1-5 and D24-28. Overall treatment time was taken from first day of EBRT to last day of HDR brachytherapy. The overall loco-regional response rate (ORR) was determined at 3 and 6 months. Results: A total of 46 patients completed the planned treatment. The overall treatment times in arm I and arm II were $65{\pm}12$ and $48{\pm}4$ days, respectively (p=0.001). At three and six months of follow-up the ORR for arm I was 96% while that for arm II was 88%. No statistically significant difference was apparent between the two arms. The overall rate of grade ${\geq}3$ toxicity was numerically higher in arm I (n=7) than in arm II (n=4) though statistical significance was not reached. None of the predefined prognostic factors like age, performance status, baseline haemoglobin level, tumour size, lymph node involvement, stage or histopathological subtype showed any impact on outcome. Conclusions: In the setting of concurrent chemoradiotherapy a shorter treatment schedule of 48 days may be feasible by interspacing brachytherapy during external irradiation. The response rates and toxicities were comparable.

세로 자기장에서 6 MeV 전자선의 선량분포에 관한 몬데칼로 계산 (Monte Carlo Calculation of the Dose Profiles for a 6 MeV Electron Beam with Longitudinal Magnetic Fields)

  • 오영기;정동혁;신교철;김기환;김정기;김진기;김부길;이정옥;문성록
    • 한국의학물리학회지:의학물리
    • /
    • 제13권4호
    • /
    • pp.195-201
    • /
    • 2002
  • 측방 산란이 상대적으로 많은 6 MeV 전자선에 대하여 세로 자기장에서 반음영의 변화를 몬테칼로 계산을 이용하여 연구하였다. 전자의 물질과의 상호작용 계산에서 외부 자기장의 효과를 반열하기 위하여 자기장에서 전자의 방향변화에 관한 알고리즘을 개발하여 EGS4 시스템에 삽입하였다. 완성된 코드를 이용하여 점선원 기하구조를 설정하고 SSD 100 cm에서 직경 5 cm인 전자선에 대하여 0-3 T의 세로 자기장이 걸려있는 팬텀속 1.5 cm, 2.0 cm, 2.4 cm 깊이에서의 빔 프로파일을 계산하였다. 자기장의 세기에 따른 반음영의 감소를 나타내기 위해 같은 질이에서의 기존 반음영의 폭과 자기장에 의한 반음영 폭의 감소 비로 반음영 감소율(PRR)을 정의하였다. 계산결과 팬텀속 1.5 cm, 2.0 cm, 2.4 cm 깊이에 대하여 자기장의 세기가 2 T인 경우에 PRR은 각각 27%, 36%, 36%로 나타났으며, 3 T인 경우에는 각각 46%, 50%, 50%로 나타났다 0.5 T와 1 T에서는 자기장의 효과가 매우 미약하였다. 이 결과는 6 MeV 전자선의 경우에 2 T 이상의 자기장을 세로방향으로 인가한는 경우에 측방산란된 전자들이 자기장에 의하여 편향되면서 반음영의 폭이 크게 줄어드는 것으로 해석할 수 있다. 결론적으로 전자선치료에서 세로 자기장을 병행하는 경우에 조사면 가장자리의 선량감소가 보상됨으로써 치료효과의 증대를 기대할 수 있다.

  • PDF

마우스 소뇌과립층의 apoptosis를 지표로 한 진단용 초음파의 안전성 검증 (The evaluation on the biological safety of diagnostic ultrasound using radiation-induced apoptosis in the external granular layer of mouse cerebellum)

  • 오헌;이송은;양정아;조성기;정치영;손창호;김성호
    • 대한수의학회지
    • /
    • 제39권3호
    • /
    • pp.628-634
    • /
    • 1999
  • We have studied, by a nonisotopic in situ end-labeling(ISEL) technique, frequency of apoptosis in the external granular layer(EGL) of the cerebellum of immature mice by ${\gamma}$-rays irradiation from $^{60}Co$ or diagnostic ultrasound exposure. The total number of normal cells and cells showing morphological features of apoptosis were counted. The frequency of apoptotic cells was expressed as a percentage of the total number of cells in EGL. The extent of changes following 200 cGy(1090 cGy/min) was studied at 2, 4, 6, 8, 12, or 24 hours after exposure. The maximal frequency was found 6~8 hours after exposure. The immature mice that received 18, 36, 54, 108, 198, 396 cGy of ${\gamma}$-rays or diagnostic ultrasound(7.5MHz, 4.2mW, $I_{SPTA}=7.9mW/cm^2$, $I_{SPTA}=114.3W/cm^2$) for 10 or 30 minutes were examined 6 hours after irradiation. Measurements performed after ${\gamma}$-ray irradiation showed a dose-related increase in apoptotic cells in each of the mice studied. The dose-response curves were analyzed by a linear-quadratic model ; frequency of apoptotic cell in the EGL was y = $(0.1349{\pm}0.01175)D$+$(-0.0001522{\pm}0.0000334)D^2$+0.048($r^2$ = 0.981, D = dose in cGy). In the experiment of ultrasound exposure, the frequency of apoptotic cell was $0.106{\pm}0.130$(10 minutes exposure) and $0.167{\pm}0.220$(30 minutes exposure). We estimated the relative dose of the yield from the experiment with ultrasound by substituting the yield from ultrasound exposure into the curve from the ${\gamma}$-irradiation. The relative dose of ultrasound exposure compared with ${\gamma}$-irradiation were 0.432 cGy(10 minutes exposure) and 0.885 cGy(30 minutes exposure). We have found that there is no evidence to indicate that diagnostic ultrasound involves a significant risk.

  • PDF

방사선치료에서 투과선량을 이용한 체내선량 검증프로그램 개발 (Development of Dose Verification Method for In vivo Dosimetry in External Radiotherapy)

  • 황의중;백태성;윤명근
    • 한국의학물리학회지:의학물리
    • /
    • 제25권1호
    • /
    • pp.23-30
    • /
    • 2014
  • 방사선치료에서는 환자 체내에 전달된 선량이 원래 의도한 데로 분포되는 지 확인하기 위하여 균질한 팬텀을 이용한 정도 관리를 치료 전에 주로 시행하고 있다. 하지만 균질한 팬텀을 이용한 정도 관리는 표면이 불규칙적이고 불균질한 인체에 대한 선량분포를 완전히 보증해 주지는 못하고 있다. 본 연구에서는 환자를 투과하는 선량의 분포를 측정하여 역으로 환자체내 선량 분포를 계산하는 투과선량 기반 체내선량 검증프로그램을 개발하였다. 투과선량은 주방사선과 산란방사선으로 이루어져 있는데, 본 연구에서는 전자포탈영상장치로 측정한 선량분포로부터 주방사선만을 이용한 간단한 식으로 환자체내선량분포를 계산하는 프로그램과 감마값 분포를 평가하여 두 선량분포를 서로 비교할 수 있는 프로그램을 개발하였다. 개발된 프로그램을 이용하여 계산한 팬텀의 등중심점을 지나는 관상면의 체내선량 분포는 치료계획시스템에서 제공하는 동일 평면의 선량분포와의 비교결과 균질팬텀에서 평균 95%, 비균질팬텀에서 81.8%의 감마통과율을 보였다.

Clinical outcome of high-dose-rate interstitial brachytherapy in patients with oral cavity cancer

  • Lee, Sung Uk;Cho, Kwan Ho;Moon, Sung Ho;Choi, Sung Weon;Park, Joo Yong;Yun, Tak;Lee, Sang Hyun;Lim, Young Kyung;Jeong, Chi Young
    • Radiation Oncology Journal
    • /
    • 제32권4호
    • /
    • pp.238-246
    • /
    • 2014
  • Purpose: To evaluate the clinical outcome of high-dose-rate (HDR) interstitial brachytherapy (IBT) in patients with oral cavity cancer. Materials and Methods: Sixteen patients with oral cavity cancer treated with HDR remote-control afterloading brachytherapy using $^{192}Ir$ between 2001 and 2013 were analyzed retrospectively. Brachytherapy was administered in 11 patients as the primary treatment and in five patients as salvage treatment for recurrence after the initial surgery. In 12 patients, external beam radiotherapy (50-55 Gy/25 fractions) was combined with IBT of 21 Gy/7 fractions. In addition, IBT was administered as the sole treatment in three patients with a total dose of 50 Gy/10 fractions and as postoperative adjuvant treatment in one patient with a total of 35 Gy/7 fractions. Results: The 5-year overall survival of the entire group was 70%. The actuarial local control rate after 3 years was 84%. All five recurrent cases after initial surgery were successfully salvaged using IBT ${\pm}$ external beam radiotherapy. Two patients developed local recurrence at 3 and 5 months, respectively, after IBT. The acute complications were acceptable (${\leq}grade$ 2). Three patients developed major late complications, such as radio-osteonecrosis, in which one patient was treated by conservative therapy and two required surgical intervention. Conclusion: HDR IBT for oral cavity cancer was effective and acceptable in diverse clinical settings, such as in the cases of primary or salvage treatment.

Analysis of radioactivity levels and hazard assessment of black sand samples from Rashid area, Egypt

  • Abdel-Rahman, Mohamed A.E.;El-Mongy, Sayed A.
    • Nuclear Engineering and Technology
    • /
    • 제49권8호
    • /
    • pp.1752-1757
    • /
    • 2017
  • The aim of this study is to evaluate the radioactivity levels and radiological impacts of representative black sand samples collected from different locations in the Rashid area, Egypt. These samples were prepared and then analyzed using the high-resolution gamma ray spectroscopy technique with a high-purity germanium detector. The activity concentration ($A_c$), minimum detectable activity, absorbed gamma dose rate, external hazard index ($H_{ex}$), annual effective dose rate equivalent, radium equivalent, as well as external and internal hazard index ($H_{ex}$ and $H_{in}$, respectively) were estimated based on the measured radionuclide concentration of the $^{238}U$($^{226}Ra$) and $^{232}Th$ decay chains and $^{40}K$. The activity concentrations of the $^{238}U$, $^{232}Th$ decay series and $^{40}K$ of these samples varied from $45.11{\pm}3.1Bq/kg$ to $252.38{\pm}34.3Bq/kg$, from $64.65{\pm}6.1Bq/kg$ to $579.84{\pm}53.1Bq/kg$, and from $403.36{\pm}20.8Bq/kg$ to $527.47{\pm}23.1Bq/kg$, respectively. The activity concentration of $^{232}Th$ in Sample 1 has the highest value compared to the other samples; this value is also higher than the worldwide mean range as reported by UNSCEAR 2000. The total absorbed gamma dose rate and the annual effective dose for these samples were found to vary from 81.19 nGy/h to 497.81 nGy/h and from $99.86{\mu}Sv/y$ to $612.31{\mu}Sv/y$, which are higher than the world average values of 59 nGy/h and $70{\mu}Sv/y$, respectively. The $H_{ex}$ values were also calculated to be 3.02, 0.47, 0.63, 0.87, 0.87, 0.51 and 0.91. It was found that the calculated value of $H_{ex}$ for Sample 1 is significantly higher than the international acceptable limit of <1. The results are tabulated, depicted, and discussed within national and international frameworks, levels, and approaches.

Guideline on Acceptance Test and Commissioning of High-Precision External Radiation Therapy Equipment

  • Kim, Juhye;Shin, Dong Oh;Choi, Sang Hyoun;Min, Soonki;Kwon, Nahye;Jung, Unjung;Kim, Dong Wook
    • 한국의학물리학회지:의학물리
    • /
    • 제29권4호
    • /
    • pp.123-136
    • /
    • 2018
  • The complex dose distribution and dose transfer characteristics of intensity-modulated radiotherapy increase the importance of precise beam data measurement and review in the acceptance inspection and preparation stages. In this study, we propose a process map for the introduction and installation of high-precision radiotherapy devices and present items and guidelines for risk management at the acceptance test procedure (ATP) and commissioning stages. Based on the ATP of the Varian and Elekta linear accelerators, the ATP items were checked step by step and compared with the quality assurance (QA) test items of the AAPM TG-142 described for the medical accelerator QA. Based on the commissioning procedure, dose quality control protocol, and mechanical quality control protocol presented at international conferences, step-by-step check items and commissioning guidelines were derived. The risk management items at each stage were (1) 21 ionization chamber performance test items and 9 electrometer, cable, and connector inspection items related to the dosimetry system; (2) 34 mechanical and dose-checking items during ATP, 22 multileaf collimator (MLC) items, and 36 imaging system items; and (3) 28 items in the measurement preparation stage and 32 items in the measurement stage after commissioning. Because the items presented in these guidelines are limited in terms of special treatment, items and practitioners can be modified to reflect the clinical needs of the institution. During the system installation, it is recommended that at least two clinically qualified medical physicists (CQMP) perform a double check in compliance with the two-person rule. We expect that this result will be useful as a radiation safety management tool that can prevent radiation accidents at each stage during the introduction of radiotherapy and the system installation process.

사보타주 공격으로 인한 사용후핵연료 운반용기 격납 실패시 핵연료 손상에 따른 방사선 영향 평가 (Evaluation of Radiation Effect on Damage to Nuclear Fuel of Spent Fuel Transport CASK due to Sabotage Attack)

  • 박기호;김종성;차건일;박창제
    • 한국압력기기공학회 논문집
    • /
    • 제18권2호
    • /
    • pp.43-49
    • /
    • 2022
  • The purpose of this study is to evaluate the radiation effect on damage when the external shield of the spent nuclear fuel transport cask is damaged due to impact as the cause of an unexpected accident. The neutron and gamma-ray intensities and spectra are calculated using the ORIGEN-Arp module in the SCALE 6.2.4 code package(1) and then using MCNP6.2(2) code calculate the dose rate. In order to evaluate the radiation dose according to the size of damage caused by external impact, various sized holes of 0.3~13.7% are assumed in the outer shield of the cask to evaluate the sensitivity to the dose. In the case of radiation source leakage, damage to the nuclear fuel assembly is assumed to be up to 6% based on overseas test cases. When only the outer shield is damaged, the maximum surface dose is calculated as 3.12E+03 mSv/hr. However, if the radiation source is leaked due to damage to the nuclear fuel assembly, it becomes 7.00E+05 mSv/hr which is about 200 times greater than the former case.

The System of Radiation Dose Assessment and Dose Conversion Coefficients in the ICRP and FGR

  • Kim, Sora;Min, Byung-Il;Park, Kihyun;Yang, Byung-Mo;Suh, Kyung-Suk
    • Journal of Radiation Protection and Research
    • /
    • 제41권4호
    • /
    • pp.424-435
    • /
    • 2016
  • Background: The International Commission on Radiological Protection (ICRP) recommendations and the Federal Guidance Report (FGR) published by the U.S. Environmental Protection Agency (EPA) have been widely applied worldwide in the fields of radiation protection and dose assessment. The dose conversion coefficients of the ICRP and FGR are widely used for assessing exposure doses. However, before the coefficients are used, the user must thoroughly understand the derivation process of the coefficients to ensure that they are used appropriately in the evaluation. Materials and Methods: The ICRP provides recommendations to regulatory and advisory agencies, mainly in the form of guidance on the fundamental principles on which appropriate radiological protection can be based. The FGR provides federal and state agencies with technical information to assist their implementation of radiation protection programs for the U.S. population. The system of radiation dose assessment and dose conversion coefficients in the ICRP and FGR is reviewed in this study. Results and Discussion: A thorough understanding of their background is essential for the proper use of dose conversion coefficients. The FGR dose assessment system was strongly influenced by the ICRP and the U.S. National Council on Radiation Protection and Measurements (NCRP), and is hence consistent with those recommendations. Moreover, the ICRP and FGR both used the scientific data reported by Biological Effects of Ionizing Radiation (BEIR) and United Nations Scientific Committee on the Effects of Atomic Radiation (UNSCEAR) as their primary source of information. The difference between the ICRP and FGR lies in the fact that the ICRP utilized information regarding a population of diverse races, whereas the FGR utilized data on the American population, as its goal was to provide guidelines for radiological protection in the US. Conclusion: The contents of this study are expected to be utilized as basic research material in the areas of radiation protection and dose assessment.