• 제목/요약/키워드: External Cooling

검색결과 295건 처리시간 0.023초

외단열 벽체에서 창호 설치 위치에 따른 단열성능 및 냉난방 에너지 소비량 (Insulation Performance and Heating and Cooling Energy Consumption depending on the Window Reveal Depth in External Wall Insulation)

  • 이규남;정근주
    • 대한건축학회논문집:구조계
    • /
    • 제33권12호
    • /
    • pp.91-98
    • /
    • 2017
  • In this study, the effect of window installation position in the residential building with the external insulation was numerically investigated in terms of insulation performance and heating/cooling energy consumption. For different window positions, 2-D heat transfer simulation was conducted to deduce the linear thermal transmittance, which was inputted to the dynamic energy simulation in order to analyze heating/cooling energy consumption. Simulation results showed that the linear thermal transmittance ranges from 0.05 W/mK to 0.7 W/mK, and is reduced as the window is installed near the external finish line. Indoor surface temperature and TDR analysis showed that the condensation risk is the lowest when the window is installed at the middle of the insulation and wall structure. It was also found that the window installation near the external finish can reduce the annual heating/cooling energy consumption by 12~16%, compared with the window installation near the interior finish. Although the window installation near the external finish can achieve the lowest heating/cooling energy consumption, it might lead to increased condensation risks unless additional insulation is applied. Thus, it can be concluded that the window should be installed near the insulation-wall structure junction, in consideration of the overall performance including energy consumption, condensation prevention and constructability.

EVALUATION OF AN ACCIDENT MANAGEMENT STRATEGY OF EMERGENCY WATER INJECTION USING FIRE ENGINES IN A TYPICAL PRESSURIZED WATER REACTOR

  • PARK, SOO-YONG;AHN, KWANG-IL
    • Nuclear Engineering and Technology
    • /
    • 제47권6호
    • /
    • pp.719-728
    • /
    • 2015
  • Following the Fukushima accident, a special safety inspection was conducted in Korea. The inspection results show that Korean nuclear power plants have no imminent risk for expected maximum potential earthquake or coastal flooding. However long- and short-term safety improvements do need to be implemented. One of the measures to increase the mitigation capability during a prolonged station blackout (SBO) accident is installing injection flow paths to provide emergency cooling water of external sources using fire engines to the steam generators or reactor cooling systems. This paper illustrates an evaluation of the effectiveness of external cooling water injection strategies using fire trucks during a potential extended SBO accident in a 1,000 MWe pressurized water reactor. With regard to the effectiveness of external cooling water injection strategies using fire engines, the strategies are judged to be very feasible for a long-term SBO, but are not likely to be effective for a short-term SBO.

항공기 외장형 정찰 장비용 냉각 시스템의 성능 특성에 관한 실험적 연구 (An Experimental Study on the Performance Characteristics of Cooling System for Aircraft External Reconnaissance Stores)

  • 정대윤;이행복
    • 한국군사과학기술학회지
    • /
    • 제16권1호
    • /
    • pp.74-80
    • /
    • 2013
  • In this paper, we have proposed a vapor cycle refrigeration system as a cooling system to provide cooling air to the aircraft external reconnaissance stores. In the proposed vapor cycle system, receiver which prevents refrigerant from subcooling was eliminated and thermal expansion valve was replaced with electronic expansion valve. The vapor cycle refrigeration system is aimed to provide cooling air to the reconnaissance stores which is added to the aircraft in the form of external store. The wide temperature range of ambient air from the flight conditions can decrease the cooling performance and can make the refrigeration system unstable in low ambient temperature. Performance characteristics of the vapor cycle refrigeration system has been experimented under air conditions which is derived from the flight envelope. From the experiments, the vapor cycle refrigeration system has been proved to provide enough cooling air to the reconnaissance equipment and to be stable under all the flight conditions.

투명 유리 사무소 건물의 냉방부하 감소를 위한 적정 외부차양 배치에 관한연구 (A Study on Designing a Proper External Shading Device to Diminish the Cooling Load of a Transparent Glazing Office Building)

  • 임상준;서혜수;김병선
    • KIEAE Journal
    • /
    • 제2권4호
    • /
    • pp.21-26
    • /
    • 2002
  • Modem architecture represent a great capitalistic, polishing, high-technology image to the public by design. As a result, glass architecture which show 'transmittance' in desinging play a leading part, consequently a role of machine is increasing in controlling an internal environment of building. These movement look like assisting an universal standard building disregarding a each nation's climate peculiarity, if glass building is applied by a proper external shading device. the shading device has a great effect on the reduction of cooling load energy, this research to propose the proper designing scheme of the fixed external shading device. The effect of proper external shading device on the cooling load is evaluated by the numeric simulation.

혁신형 안전경수로의 원자로용기 외벽냉각 시 2상 자연순환 유동에 대한 수치해석적 연구 (Numerical Study on Two-phase Natural Circulation Flow by External Reactor Vessel Cooling of iPOWER)

  • 박연하;황도현;이연건
    • 에너지공학
    • /
    • 제28권4호
    • /
    • pp.103-110
    • /
    • 2019
  • 국내에서 개발 중인 차세대 혁신형 안전경수로인 iPOWER는 피동용융노심냉각계통의 도입을 통해 중대사고시 노심용융물을 원자로 하부에서 장기간 냉각하고 안정화시키고자 한다. 아직 피동용융노심냉각계통의 최종 설계개념이 확정되기 전이나, 원자로용기 외벽냉각을 통한 노심용융물의 노내 억류 역시 주요 중대사고 대처 전략의 하나로 검토되고 있다. 본 연구에서는 국내에서 개발된 열수력 계통해석코드인 MARS-KS를 이용하여 원자로용기와 단열체 사이에서 형성되는 2상 자연순환 유동을 모의하였다. 냉각수의 유로를 일차원으로 모델링하고, 노심용융물의 열부하에 따른 경계조건을 정의하여 자연순환 유량을 계산하였다. 또한 냉각수의 온도 및 수위, 원자로용기 하반구 주변 기포율 및 외벽에서의 열전달모드 등 주요 열수력 변수의 과도거동을 평가하였다.

냉각탑 주위의 장애물에 의한 재순환 현상에 관한 수치해석 (Numerical Analysis on Recirculation Generated by Obstacles around a Cooling Tower)

  • 이정희;최영기
    • 설비공학논문집
    • /
    • 제18권7호
    • /
    • pp.578-586
    • /
    • 2006
  • The present study has been conducted to examine the effect of obstacles around a cooling tower and an air-guide to prevent recirculation. In order to analyze the interaction between external flow and cooling tower exit flow, the external region as well as the cooling, tower are included in computational domain. Two dimensional analysis is performed using the finite volume method with non-orthogonal and unstructured grid system. The standard ${\kappa}-{\varepsilon}$ turbulence model is used. To investigate the recirculation phenomena, flow and temperature fields are calculated with three approaches such as, the distance between cooling tower and obstacle, the allocated geometrical type, and the effect of height of obstacle. In addition, the air-guide is considered in the current computation. The mean recirculation rate increases with the height of obstacle. The effect of air-guide to reduce the mean recirculation rate is obviously observed.

원자로용기 외벽냉각시 원자로공동에서 이상유동 자연순환 해석 (Analysis of Two Phase Natural Circulation Flow in the Reactor Cavity under External Vessel Cooling)

  • 박래준;하광순;김상백;김희동
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2004년도 춘계학술대회
    • /
    • pp.2141-2145
    • /
    • 2004
  • As part of study on thermal hydraulic behavior in the reactor cavity under external vessel cooling in the APR (Advanced Power Reactor) 1400, one dimensional two phase flow of steady state in the reactor cavity have been analyzed to investigate a coolant circulation mass flow rate in the annulus region between the reactor vessel and the insulation material using the RELAP5/MOD3 computer code. The RELAP5/MOD3 results have shown that a two phase natural circulation flow of 300 - 600 kg/s is generated in the annulus region between the reactor vessel and the insulation material when the external vessel cooling has been applied in the APR 1400. An increase in the heat flux of the inner vessel leads to an increase of the coolant mass flow rate. An increase in the coolant outlet area leads to an increase in the coolant circulation mass flow rate, but the coolant inlet area does not effective on the coolant circulation mass flow rate. The change of the lower coolant outlet to a lower position affects the coolant circulation mass flow rate, but the variation trend is not consistent.

  • PDF

Numerical study on thermal-hydraulics of external reactor vessel cooling in high-power reactor using MARS-KS1.5 code: CFD-aided estimation of natural circulation flow rate

  • Song, Min Seop;Park, Il Woong;Kim, Eung Soo;Lee, Yeon-Gun
    • Nuclear Engineering and Technology
    • /
    • 제54권1호
    • /
    • pp.72-83
    • /
    • 2022
  • This paper presents a numerical investigation of two-phase natural circulation flows established when external reactor vessel cooling is applied to a severe accident of the APR1400 reactor for the in-vessel retention of the core melt. The coolability limit due to external reactor vessel cooling is associated with the natural circulation flow rate around the lower head of the reactor vessel. For an elaborate prediction of the natural circulation flow rate using a thermal-hydraulic system code, MARS-KS1.5, a three-dimensional computational fluid dynamics (CFD) simulation is conducted to estimate the flow rate and pressure distribution of a liquid-state coolant at the brink of significant void generation. The CFD calculation results are used to determine the loss coefficient at major flow junctions, where substantial pressure losses are expected, in the nodalization scheme of the MARS-KS code such that the single-phase flow rate is the same as that predicted via CFD simulations. Subsequently, the MARS-KS analysis is performed for the two-phase natural circulation regime, and the transient behavior of the main thermal-hydraulic variables is investigated.

Film-Cooling Hole의 유출계수에 관한 수치해석적 연구 (A Computational Study for the Discharge Coefficient of a Film-Cooling Hole)

  • 김재형;김희동;박경암
    • 한국추진공학회지
    • /
    • 제7권2호
    • /
    • pp.15-22
    • /
    • 2003
  • 본 연구에서는 2차원 압축성 Navier-Stokes 방정식을 사용하여 $30^{\cire}$ 경사진 터빈익의 냉각구를 통한 유출계수를 예측하였다. 내/외부 유동이 유출계수에 미치는 영향을 알아보기 위하여 외부유동만 존재하는 경우, 내부유동만 존재하는 경우 그리고 내/외부 유동이 없는 3가지 경우에 대하여 수치해석을 수행하였으며. 실험결과와 비교하였다. 본 연구의 수치해석결과는 유출계수를 잘 예측하였으며, 외부유동은 유출계수를 감소시키고, 내부유동은 냉각구내에서의 전압손실과 경계층의 영향을 감소시켜 특정 구간에서 유출계수를 증가시킨다는 것을 알았다.

Effect of emergency core cooling system flow reduction on channel temperature during recirculation phase of large break loss-of-coolant accident at Wolsong unit 1

  • Yu, Seon Oh;Cho, Yong Jin;Kim, Sung Joong
    • Nuclear Engineering and Technology
    • /
    • 제49권5호
    • /
    • pp.979-988
    • /
    • 2017
  • The feasibility of cooling in a pressurized heavy water reactor after a large break loss-of-coolant accident has been analyzed using Multidimensional Analysis of Reactor Safety-KINS Standard code during the recirculation phase. Through evaluation of sensitivity of the fuel channel temperature to various effective recirculation flow areas, it is determined that proper cooling of the fuel channels in the broken loop is feasible if the effective flow area remains above approximately 70% of the nominal flow area. When the flow area is reduced by more than approximately 25% of the nominal value, however, incipience of boiling is expected, after which the thermal integrity of the fuel channel can be threatened. In addition, if a dramatic reduction of the recirculation flow occurs, excursions and frequent fluctuations of temperature in the fuel channels are likely to be unavoidable, and thus damage to the fuel channels would be anticipated. To resolve this, emergency coolant supply through the newly installed external injection path can be used as one alternative means of cooling, enabling fuel channel integrity to be maintained and permanently preventing severe accident conditions. Thus, the external injection flow required to guarantee fuel channel coolability has been estimated.