• Title/Summary/Keyword: External $Ca^{2+}$

Search Result 170, Processing Time 0.023 seconds

The Study on $Na^+-Ca^{++}$ Exchange in Heart Mitochondria (심근 Mitochondria의 $Na^+-Ca^{++}$교환에 관한 연구)

  • Shin, Sang-Goo;Kim, Myung-Suk;Lim, Jung-Kyoo
    • The Korean Journal of Pharmacology
    • /
    • v.18 no.2
    • /
    • pp.89-102
    • /
    • 1982
  • The $Na^+-and\;K^+-induced\;Ca^{++}$ release was measured isotopically by millipore filter technique in pig heart mitochondria. With EGTA-quenching technique, the characteristics of mitochondrial $Ca^{++}-pool$ and the sources of $Ca^{++}$ released from mitochondria by $Na^+\;or\;K^+$ were analyzed. The mitochondrial $Ca^{++}-pool$ could be distinctly divided into two components: internal and external ones which were represented either by uptake through inner membrane, or by energy independent passive binding to external surface of mitochondria, respectively. In energized mitochondria, a large portion of $Ca^{++}$was transported into internal pool with little external binding, while in de-enerigzed state, a large portion of transported $Ca^{++}$ existed in the external pool with limited amount of $Ca^{++}$ in the internal pool which was possibly transported through the $Ca^{++}-carrier$ present in the inner membrane. $Na^+$ induced the $Ca^{++}$ release from both internal pool and external pool and external binding pool of mitochondria. In contrast, $K^+$ did not affect $Ca^{++}$ of the internal pool, but, displaced $Ca^{++}$ bound to external surface of the mitochondria. When the $Ca^{++}-reuptake$ was blocked by EGTA, the $Ca^{++}$ release from the internal pool by $Na^+$ was rapid; the rate of $Ca^{++}-efflux$ appeared to be a function of $[Na^+]^2$ and about 8mM $Na^+$ was required to elicit half-maximal velocity of $Ca^{++}-efflux$. So it was revealed that $Ca^{++}-efflux$ velocity was particulary sensitive to small changes of the $Na^+$ concentration in physiological range. Energy independent $Ca^{++}-binding$ sites of mitochondrial external surface showed unique characteristics. The total number of external $Ca^{++}-binding$ sites of pig heart mitochondria was 29 nmoles per mg protein and the dissociation constant(Kd) was $34{\mu}M$. The $Ca^{++}-binding$ to the external sites seemed to be competitively inhibited by $Na^+\;and\;K^+$; the inhibition constant(Ki) were 9.7 mM and 7.1 mM respectively. Considering the intracellular ion concentrations and large proportion of $Ca^{++}$ uptake in energized mitochondria, the external $Ca^{++}-binding$ pool of the mitochondria did not seem to play a significant role on the regulation of intracellular free $Ca^{++}$ concentration. From this experiment, it was suggested that a small change of intracellular free $Na^+$ concentration might play a role on regulation of free $Ca^{++}$ concentration in cardiac cell by influencing $Ca^{++}-efflux$ from the internal pool of mitochondria.

  • PDF

The Effect of External Divalent Cations on Intestinal Pacemaking Activity

  • Kim, Byung-Joo;Kim, Ki-Whan
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.9 no.4
    • /
    • pp.203-207
    • /
    • 2005
  • Electrical rhythmicity in the gastrointestinal (GI) muscles is generated by pacemaker cells, known as interstitial cells of Cajal (ICC). In the present study, we investigated the effect of external divalent cations on pacemaking activity in cultured ICC from murine small intestine by using whole-cell patch clamp techniques. ICC generated pacemaker currents under a voltage clamp or electrical pacemaker potentials under a current clamp, and showed a mean amplitude of $-500{\pm}50$ pA or $30{\pm}1$ mV and the frequency of $18{\pm}2$ cycles/min. Treatments of the cells with external 0 mM $Ca^{2+}$ stopped pacemaking activity of ICC. In the presence of 2 mM $Ca^{2+}$, 0 mM external $Mg^{2+}$ depolarized the resting membrane potential, and there was no change in the frequency of pacemaking activity. However, 10 mM external $Mg^{2+}$ decreased the frequency of pacemaking activity ($6.75{\pm}1$ cycles/min, n=5). We replaced external 2 mM $Ca^{2+}$ with equimolar $Ba^{2+}$, $Mn^{2+}$ and $Sr^{2+}$, and they all developed inward current in the sequence of $Ba^{2+}$>$Mn^{2+}$>$Sr^{2+}$. Also the frequency of the pacemaking activity was stopped or irregulated. We investigated the effect of 10 mM $Ba^{2+}$, $Mn^{2+}$ and $Sr^{2+}$ on pacemaking activity of ICC in the presence of external 0 mM $Mg^{2+}$, and found that 10 mM $Ba^{2+}$ and $Mn^{2+}$ induced large inward current and stopped the pacemaking activity of ICC (n=5). Interestingly, 10 mM $Sr^{2+}$ induced small inward current and potentiated the amplitude of pacemaking activity of ICC (n=5). These results indicate that extracellular $Ca^{2+}$ and $Mg^{2+}$ are requisite for the pacemaking activity of ICC.

Different Mechanisms of K-induced Contracture in Isolated Vascular and Intestinal Smooth Muscles (혈관 및 장관 평활근의 K-경축 발생기전)

  • Kim, Ki-Whan;Hwang, Sang-Ik;Nam, Kee-Yong
    • The Korean Journal of Physiology
    • /
    • v.13 no.1_2
    • /
    • pp.41-50
    • /
    • 1979
  • The activation mechanism of K-induced contracture was studied in renal vascular muscle which does not generate an action potential readily and in taenia coli which generates a spike potential spontaneously. Helical strips of arterial muscle from rabbit renal arteries and longitudinal strips of taenia coli from guinea-pig's colons, respectively, were prepared. All experiments were performed in Tris-buffered Tyrode solution which was aerated with 100% $O_2$ and kept $35^{\circ}C$. Renal arterial muscles developed the contracture rapidly, which was composed of a small phasic and a large tonic components, when exposed to a 40 mM K-Tyrode solution. In the absence of external $Ca^{++}$, however, no K-contracture appeared. The contracture induced by K-depolarization was abolished by the treatment with verapamil, which is known to be a selective $Ca^{++}-blocker$ through potential-sensitive $Ca^{++}-channel$. K-contracture of taenia coli showed the contracture composed of a large phasic and a small tonic components. In the $Ca^{++}-free$ Tyrode solution, only the tonic component was abolished and almost no change in the phasic component was observed. The amplitude of tonic component was dependent on the external $Ca^{++}$; The tonic component increased dose-dependently by a stepwise increase of the external $Ca^{++}$, and this component decreased in parallel with the increase of verapamil in the external medium. The results of this experiment suggest that K-contracture of rabbit renal artery is the direct result of the influx of the external $Ca^{++}$, while that of taenia coli is the result of both $Ca^{++}$ influx and the release of sequestered $Ca^{++}$.

  • PDF

Inhibition of Calcium Transport by $(1R,9S)-\beta-Hydrastine$ Hydrochloride in PC12 Cells

  • Yin, Shou-Yu;Lee, Myung-Koo
    • Natural Product Sciences
    • /
    • v.12 no.4
    • /
    • pp.217-220
    • /
    • 2006
  • The effects of $(1R,9S)-\beta-hydrastine$ hydrochloride (BHSH) on $Ca^{2+}$ transport in rat pheochromocytoma PC12 cells were investigated. In the presence of external $Ca^{2+}$, BHSH at $100{\mu}M$ inhibited $K^+$ (56mM)-induced dopamine release, and $K^+-induced$ $Ca^{2+}$ influx and a sustained rise of $[Ca^{2+}]_i$. In addition, BHSH at 100 f.!M reduced the sustained rise of $[Ca^{2+}]_i$ elicited by 20 mM caffeine, but not by $1{\mu}M$ thapsigargin, in presence of external $Ca^{2+}$. These results suggest that BHSH inhibited $K^+-induced$ dopamine release and $[Ca^{2+}]_i$ influx, and store-operated $Ca^{2+}$ channels activated by caffeine, but not by thapsigargin, in PC12 cells.

Studies on Platelet Activation of Saikosaponin Isolated From Bupleuri Radix (시호 Saponin의 혈소판 활성화 작용에 관한 연구)

  • 박영현;송민주;김남수
    • Journal of Food Hygiene and Safety
    • /
    • v.13 no.4
    • /
    • pp.355-359
    • /
    • 1998
  • Platelet activation is originated by the intracellular or/and extracellular $Ca^{2+}$. Agonist-induced $Ca^{2+}$ entry through a plasma-membrane pathway has been reported repeatedly, but the mechanisms has proven harder to elucidate. Recently, a number of natural products have been isolated from medicinal plants and marine organisms and have proved to be useful chemical tools for resolving the mechanism of cellular functions. In an attempt to understand the mechanism of platelet activation in Bupleuri Radix, we have studied some aspects of the isolation of active components and their dependence of external $Ca^{2+}$> on platelet activation. Acetone extract of Bupleuri Radix has the most activity on platelet activation and it's active components were identified as saikosaponin a and d. Their optimal concentration was respectively $20\;\mu\textrm{g}/ml$ and $5\;\mu\textrm{g}/ml$ and their platelet activation was not dependent on external $Ca^{2+}$>, whereas optimal concentration of each agonist was arachidonic acid ($10\;\mu\textrm{M}$), collagen ($10\;\mu\textrm{M}/ml$), thrombin (0.1 unit/mi), PAF (5 nM), PMA ($5\;\mu\textrm{M}$), ionophore A23187 ($2\;\mu\textrm{g}$) and their dependence of external $Ca^{2+}$> on platelet activation appeared to thrombin > collagen $\geq$ PAF > PMA > arachdonic acid> ionophore A23187. These results suggest that saikosaponin is different from each agonists in the dependence of external $Ca^{2+}$ on platelet activation.

  • PDF

Different Mechanisms for the Activation of Vascular Smooth Muscle by Norepinephrine and Depolarization (혈관 평활근의 수축기전에 관한 연구)

  • Hong, Yong-Woo;Ko, Kwang-Wook;Kim, Ki-Whan
    • The Korean Journal of Physiology
    • /
    • v.21 no.2
    • /
    • pp.191-200
    • /
    • 1987
  • The activation mechanism of the sustained contractions induced by norepinephrine and K-depolarization was studied in renal vascular muscle. Helical strips of arterial muscle were prepared from rabbit renal arteries. All experiments were performed in Tris-buffered Tyrode solution which was aerated with 100% $O_2$ and kept at $35^{\circ}C$. Renal arterial muscles developed a contracture rapidly when exposed to a 40 mM K-Tyrode solution. In the absence of external $Ca^{2+}$, however, no K-contracture appeared. The contracture induced by K-depolarization was abolished by the treatment with $Ca^{2+}-antagonist\;(verapamil)$ or lanthanum $(La^{3+})$. From these results, it is obvious that K-contracture of renal arterial strip required $Ca^{2+}$ in the medium and this contracture was developed by the increased $Ca^{2+}-influx$ due to K-depolarization. Noradrenaline (5 mg/l) induced also a similar sustained contraction rapidly in all strips. Even on the K-contracture and in $Ca^{2+}-free$ Tyrode solution and also in the Tyrode solution pretreated with verapamil or $La^{3+}$, noradrenaline produced a contraction. However, the contraction in $Ca^{2+}-free$ Tyrode solution was not sustained and decreased gradually. The amplitude of noradrenaline-induced contracture was dependent on external $Ca^{2+}$; The contracture increased dose-dependently, but over 3 mM $Ca^{2+}$, decreased. The results of this experiment suggest that K-contracture was developed by an increased $Ca^{2+}-influx$ due to membrane depolarization, while noradrenaline-induced contracture was developed by both transmembrane $Ca^{2+}-influx$ and the mobilizaiton of cellular $Ca^{2+}$

  • PDF

Ca2+-regulated ion channels

  • Cox, Daniel H.
    • BMB Reports
    • /
    • v.44 no.10
    • /
    • pp.635-646
    • /
    • 2011
  • Due to its high external and low internal concentration the $Ca^{2+}$ ion is used ubiquitously as an intracellular signaling molecule, and a great many $Ca^{2+}$-sensing proteins have evolved to receive and propagate $Ca^{2+}$ signals. Among them are ion channel proteins, whose $Ca^{2+}$ sensitivity allows internal $Ca^{2+}$ to influence the electrical activity of cell membranes and to feedback-inhibit further $Ca^{2+}$ entry into the cytoplasm. In this review I will describe what is understood about the $Ca^{2+}$ sensing mechanisms of the three best studied classes of $Ca^{2+}$-sensitive ion channels: Large-conductance $Ca^{2+}$-activated $K^+$ channels, small-conductance $Ca^{2+}$-activated $K^+$ channels, and voltage-gated $Ca^{2+}$ channels. Great strides in mechanistic understanding have be made for each of these channel types in just the past few years.

Forward-Mode $Na^+-Ca^{2+}$ Exchange during Depolarization in the Rat Ventricular Myocytes with High EGTA

  • Kim, Eun-Gi;Ko, Chang-Mann
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.5 no.6
    • /
    • pp.487-494
    • /
    • 2001
  • During depolarization, extrusion of $Ca^{2+}$ from sarcoplasmic reticulum through forward-mode $Na^+-Ca^{2+}$ exchange was studied in the rat ventricular myocytes patch-clamped in whole-cell configuration. In order to confine the $Ca^{2+}$ responses in a micro-domain by limiting the $Ca^{2+}$ diffusion time, rat ventricular myocytes were dialyzed with high (14 mM) EGTA. $K^+$ current was suppressed by substituting KCl with 105 mM CsCl and 20 mM TEA in the pipette filling solution and by omitting KCl in the external Tyrode solution. $Cl^-$ current was suppressed by adding 0.1 mM DIDS in the external Tyrode solution. During stimulation roughly mimicking action potential, the initial outward current was converted into inward current, $47{\pm}1%$ of which was suppressed by 0.1 mM $CdCl_2.$ 10 mM caffeine increased the remaining inward current after $CdCl_2$ in a cAMP-dependent manner. This caffeine-induced inward current was blocked by $1\;{\mu}M$ ryanodine, $10\;{\mu}M$ thapsigargin, 5 mM $NiCl_2,$ or by $Na^+\;and\;Ca^{2+}$ omission, but not by $0.1\;{\mu}M$ isoproterenol. The $I{\sim}V$ relationship of the caffeine-induced current elicited inward current from -45 mV to +3 mV with the peak at -25 mV. Taken together, it is concluded that, during activation of the rat ventricular myocyte, forward-mode $Na^+-Ca^{2+}$ exchange extrudes a fraction of $Ca^{2+}$ released from sarcoplasmic reticulum mainly by voltage-sensitive release mechanism in a micro-domain in the t-tubule, which is functionally separable from global $Ca^{2+}{_i}$ by EGTA.

  • PDF

Effects of External $Ca^{2+}$ ana the Inhibition of Na-pump on the Vanadate-induced Contraction in the Isolated Human and Rat Uterine Smooth Muscle (사람 및 흰쥐의 자궁근에서 Vanadate에 의한 수축에 미치는 외부 Calcium 및 Na-pump억제의 영향)

  • Jung, Jin-Sub;Han, Bok-Ki;Woo, Jae-Suk;Lee, Sang-Ho
    • The Korean Journal of Physiology
    • /
    • v.18 no.2
    • /
    • pp.125-137
    • /
    • 1984
  • The effects of external $Ca^{2+}$ ana the inhibition of Na-pump on vanadate-induced contraction in isolated human and rat uterine smooth muscle were studied and the following results were observed. 1) Vanadate induced contraction in rat uterine muscle and showed maximal contraction at concentration of $5{\times}10^{-4}$M, and the contractile response to vanadate was more sensitive in human than rat uterine muscle. 2) Vanadate-induced contraction was not completely inhibited by $Ca^{2+}$ removal from PSS and the response to $Ca^{2+}$ removal was more sensitive in human than rat uterine muscle. 3) Vanadate-induced contraction decreased with increasing concentration of verapamil, but even in the presence of $3{\times}10^{-5}M$ verapamil which inhibited 100 K-induced contraction completely. about 40% of maximal contraction remained, and its amplitude was similar to that of contraction in $Ca^{2+}$-free solution. 4) Vanadate-induced contraction was increased by the inhibition of Na-pump and this increase also could be observed in the presence of $3{\times}10^{-5}M$ verapamil. 5) After pretreatment with $Ca^{2+}$-free PSS containing ouabain Vanadate-induced contraction was not increased, but the contractile response of these tissues to the addition of external $Ca^{2+}$ was remarkably increased in the presence of vanadate. 6) $3{\times}10^{-5}$M verapamil inhibited vanadate-induced $Ca^{45}$ influx completely, but after pretreatment with ouabain vanadate could induce remarkable $Ca^{45}$ influx even in the presence of verapmil. 7) With increasing the time of pretreatment with ouabain or $K^+$-free solution, the degree of increase in contraction by vanadate was more remarkable. 8) $10^{-4}M$ papaverine stowed a considerable inhibition of the increase in the vanadate-induced contraction by pretreatment with ouabain. 9) Acetylcholine-induced contraction increased with lengthening the duration of Na-pump inhibition even in the presence of verapamil. Considering above results it seems that the uterine muscle of human is more sensitive to vanadate than that of rat, and both internal and external $Ca^{2+}$ is utilized in vanadate·induced contraction. In the case of Na-pump inhibition several smooth muscle contracting agents seems to induce $Ca^{2+}$ influx which is not inhibited by verapamil. This $Ca^{2+}$ influx seems to be inhibited by papaverine and to be associated with membrane potential, although its precise characteristics is not certain.

  • PDF

Role of $Ca^{2+}$ and Calmodulin on the Initiation of Sperm Motility in Salmonid Fishes

  • Kho, Kang-Hee;Morisawa, Masaaki;Choi, Kap-Seong
    • Journal of Microbiology and Biotechnology
    • /
    • v.14 no.3
    • /
    • pp.456-465
    • /
    • 2004
  • $K^+$ efflux through a certain type of $K^+$ channels causes the change of membrane potential and leads to cAMP synthesis in the transmembrane cell signaling for the initiation of sperm motility in the salmonid fishes. The addition of $Ca^{2+}$ conferred motility to the trout sperm that were immobilized by external $K^+$ and other alkaline metals, $Rb^+$ and $Cs^{2+}$, suggesting the participation of external $Ca^{2+}$ in the initiation of sperm motility. L-type $Ca^{2+}$ channel blockers such as nifedipine, nimodipine, and FS-2 inhibited the motility, but N-type $Ca^{2+}$ channel blocker, w-conotoxin MvIIA, did not. On the other hand, the membrane hyperpolarization and cAMP synthesis were suppressed by $Ca^{2+}$ channel blockers, nifedipine, and trifluoroperazine. Furthermore, these suppressions were relieved by the addition of $K^+$ ionophore, valinomycin. Inhibitors of calmodulin, such as W-7, trifluoperazine, and calrnidazol-C1, inhibited the sperm motility, membrane hyperpolarization, and cAMP synthesis. The results suggest that $Ca^{2+}$ influx through $Ca^{2+}$ channels that are sensitive to specific $Ca^{2+}$ channel blockers and calmodulin participate in the changes of membrane potential, leading to synthesis of cAMP in the cell signaling for the initiation of trout sperm motility.