1 |
Clapham, D. E. (2007) Calcium signaling. Cell 131, 1047-1058.
DOI
ScienceOn
|
2 |
Williams, R. J. P. (1999) Calcium as a Cellular Regulator. Oxford University press, Oxford.
|
3 |
Kim, E. Y., Rumpf, C. H., Fujiwara, Y., Cooley, E. S., Van Petegem, F. and Minor, D. L. (2008) Structures of CaV2 /CaM-IQ domain complexes reveal binding modes that underlie calcium-dependent inactivation and facilitation. Structure (London, England : 1993) 16, 1455-1467.
DOI
ScienceOn
|
4 |
Mori, M. X., Vander Kooi, C. W., Leahy, D. J. and Yue, D. T. (2008) Crystal structure of the CaV2 IQ domain in complex with /calmodulin: high-resolution mechanistic implications for channel regulation by . Structure (London, England : 1993) 16, 607-620.
DOI
ScienceOn
|
5 |
Van Petegem, F., Chatelain, F. C. and Minor, D. L. (2005) Insights into voltage-gated calcium channel regulation from the structure of the CaV1.2 IQ domain-/calmodulin complex. Nat. Struct. Mol. Biol. 12, 1108-1115.
DOI
ScienceOn
|
6 |
Cox, D. H. and Dunlap, K. (1994) Inactivation of N-type calcium current in chick sensory neurons: calcium and voltage dependence. J. Gen. Physiol. 104, 311-336.
DOI
ScienceOn
|
7 |
Fakler, B. and Adelman, J. P. (2008) Control of K(Ca) channels by calcium nano/microdomains. Neuron 59, 873-881.
DOI
ScienceOn
|
8 |
Faber, E. S. L. (2009) Functions and modulation of neuronal SK channels. Cell Biochem. Biophys. 55, 127-139.
DOI
ScienceOn
|
9 |
Liang, H., DeMaria, C. D., Erickson, M. G., Mori, M. X., Alseikhan, B. A. and Yue, D. T. (2003) Unified mechanisms of regulation across the channel family. Neuron 39, 951-960.
DOI
ScienceOn
|
10 |
Keen, J. E., Khawaled, R., Farrens, D. L., Neelands, T., Rivard, A., Bond, C. T., Janowsky, A., Fakler, B., Adelman, J. P. and Maylie, J. (1999) Domains responsible for constitutive and -dependent interactions between calmodulin and small conductance -activated potassium channels. J. Neurosci. 19, 8830-8838.
|
11 |
Erickson, M. G., Alseikhan, B. A., Peterson, B. Z. and Yue, D. T. (2001) Preassociation of calmodulin with voltage-gated channels revealed by FRET in single living cells. Neuron 31, 973-985.
DOI
ScienceOn
|
12 |
Mori, M. X., Erickson, M. G. and Yue, D. T. (2004) Functional stoichiometry and local enrichment of calmodulin interacting with channels. Science (New York, NY) 304, 432-435.
DOI
ScienceOn
|
13 |
Zuhlke, R. D., Pitt, G. S., Deisseroth, K., Tsien, R. W. and Reuter, H. (1999) Calmodulin supports both inactivation and facilitation of L-type calcium channels. Nature 399, 159-162.
DOI
ScienceOn
|
14 |
Lee, A., Zhou, H., Scheuer, T. and Catterall, W. A. (2003) Molecular determinants of /calmodulin-dependent regulation of Ca(v)2.1 channels. Proc. Natl. Acad. Sci. U. S. A. 100, 16059-16064.
DOI
ScienceOn
|
15 |
Minor, D. L. and Findeisen, F. (2010) Progress in the structural understanding of voltage-gated calcium channel (CaV) function and modulation. Channels (Austin, Tex) 4, 459-474.
DOI
ScienceOn
|
16 |
Brehm, P., Eckert, R. and Tillotson, D. (1980) Calciummediated inactivation of calcium current in Paramecium. J. Physiol. 306, 193-203.
DOI
|
17 |
Peterson, B. Z., DeMaria, C. D., Adelman, J. P. and Yue, D. T. (1999) Calmodulin is the sensor for -dependent inactivation of L-type calcium channels. Neuron 22, 549-558.
DOI
ScienceOn
|
18 |
Fallon, J. L., Halling, D. B., Hamilton, S. L. and Quiocho, F. A. (2005) Structure of calmodulin bound to the hydrophobic IQ domain of the cardiac Ca(v)1.2 calcium channel. Structure (London, England : 1993) 13, 1881-1886.
DOI
ScienceOn
|
19 |
Ertel, E. A., Campbell, K. P., Harpold, M. M., Hofmann, F., Mori, Y., Perez-Reyes, E., Schwartz, A., Snutch, T. P., Tanabe, T., Birnbaumer, L., Tsien, R. W. and Catterall, W. A. (2000) Nomenclature of voltage-gated calcium channels. Neuron 25, 533-535.
DOI
ScienceOn
|
20 |
Dick, I. E., Tadross, M. R., Liang, H., Tay, L. H., Yang, W. and Yue, D. T. (2008) A modular switch for spatial selectivity in the calmodulin regulation of CaV channels. Nature 451, 830-834.
DOI
ScienceOn
|
21 |
Lee, A., Wong, S. T., Gallagher, D., Li, B., Storm, D. R., Scheuer, T. and Catterall, W. A. (1999) /calmodulin binds to and modulates P/Q-type calcium channels. Nature 399, 155-159.
DOI
ScienceOn
|
22 |
Borst, J. G. and Sakmann, B. (1998) Facilitation of presynaptic calcium currents in the rat brainstem. J. Physiol. 513 (Pt 1), 149-155.
DOI
ScienceOn
|
23 |
Cuttle, M. F., Tsujimoto, T., Forsythe, I. D. and Takahashi, T. (1998) Facilitation of the presynaptic calcium current at an auditory synapse in rat brainstem. J. Physiol. 512 (Pt 3), 723-729.
DOI
ScienceOn
|
24 |
DeMaria, C. D., Soong, T. W., Alseikhan, B. A., Alvania, R. S. and Yue, D. T. (2001) Calmodulin bifurcates the local signal that modulates P/Q-type channels. Nature 411, 484-489.
DOI
ScienceOn
|
25 |
Chaudhuri, D., Chang, S. Y., DeMaria, C. D., Alvania, R. S., Soong, T. W. and Yue, D. T. (2004) Alternative splicing as a molecular switch for /calmodulin-dependent facilitationof P/Q-type channels. J. Neurosci. 24, 6334-6342.
DOI
ScienceOn
|
26 |
Zuhlke, R. D., Pitt, G. S., Tsien, R. W. and Reuter, H. (2000) -sensitive inactivation and facilitation of L-type channels both depend on specific amino acid residues in a consensus calmodulin-binding motif in the(alpha)1C sub-unit. J. Biol. Chem. 275, 21121-21129.
DOI
ScienceOn
|
27 |
Chaudhuri, D., Issa, J. B. and Yue, D. T. (2007) Elementary mechanisms producing facilitation of Cav2.1 (P/Q-type) channels. J. Gen. Physiol. 129, 385-401.
DOI
ScienceOn
|
28 |
Dunlap, K. (2007) Calcium Channels Are Models of Self- Control. J. Gen. Physiol. 129, 379-383.
DOI
ScienceOn
|
29 |
Imredy, J. P. and Yue, D. T. (1994) Mechanism of -sensitive inactivation of L-type channels. Neuron 12, 1301-1318.
DOI
ScienceOn
|
30 |
Lee, A., Scheuer, T. and Catterall, W. A. (2000) /calmodulin- dependent facilitation and inactivation of P/Q-type channels. J. Neurosci. 20, 6830-6838.
|
31 |
Tadross, M. R., Dick, I. E. and Yue, D. T. (2008) Mechanism of local and global sensing by calmodulin in complex with a channel. Cell 133, 1228-1240.
DOI
ScienceOn
|
32 |
Lacinova, L. (2005) Voltage-dependent calcium channels. Gen. Physiol. Biophys. 24 (Suppl 1), 1-78.
DOI
|
33 |
Alseikhan, B. A., DeMaria, C. D., Colecraft, H. M. and Yue, D. T. (2002) Engineered calmodulins reveal the unexpected eminence of channel inactivation in controlling heart excitation. Proc. Natl. Acad. Sci. U. S. A. 99, 17185-17190.
DOI
ScienceOn
|
34 |
Catterall, W. A. and Few, A. P. (2008) Calcium channel regulation and presynaptic plasticity. Neuron 59, 882-901.
DOI
ScienceOn
|
35 |
Chaudhuri, D., Alseikhan, B. A., Chang, S. Y., Soong, T. W. and Yue, D. T. (2005) Developmental activation of calmodulin-dependent facilitation of cerebellar P-type current. J. Neurosci. 25, 8282-8294.
DOI
ScienceOn
|
36 |
Ishii, T. M., Silvia, C., Hirschberg, B., Bond, C. T., Adelman, J. P. and Maylie, J. (1997) A human intermediate conductance calcium-activated potassium channel. Proc. Natl. Acad. Sci. U.S.A. 94, 11651-11656.
DOI
|
37 |
Xia, X. M., Fakler, B., Rivard, A., Wayman, G., Johnson- Pais, T., Keen, J. E., Ishii, T., Hirschberg, B., Bond, C. T., Lutsenko, S., Maylie, J. and Adelman, J. P. (1998) Mechanism of calcium gating in small-conductance calcium-activated potassium channels. Nature 395, 503-507.
DOI
ScienceOn
|
38 |
Yap, K. L., Kim, J., Truong, K., Sherman, M., Yuan, T. and Ikura, M. (2000) Calmodulin target database. J. Struct. Funct. Genomics 1, 8-14.
DOI
|
39 |
Yap, K. L., Ames, J. B., Swindells, M. B. and Ikura, M. (1999) Diversity of conformational states and changes within the EF-hand protein superfamily. Proteins 37, 499-507.
DOI
ScienceOn
|
40 |
Bahler, M. and Rhoads, A. (2002) Calmodulin signaling via the IQ motif. FEBS Lett. 513, 107-113.
DOI
ScienceOn
|
41 |
Stefan, M. I., Edelstein, S. J. and Le Novère, N. (2008) An allosteric model of calmodulin explains differential activation of PP2B and CaMKII. Proc. Natl. Acad. Sci. U. S. A. 105, 10768-10773.
DOI
ScienceOn
|
42 |
Schumacher, M. A., Rivard, A. F., Bachinger, H. P. and Adelman, J. P. (2001) Structure of the gating domain of a -activated channel complexed with /calmodulin. Nature 410, 1120-1124.
DOI
ScienceOn
|
43 |
Schumacher, M. A., Crum, M. and Miller, M. C. (2004) Crystal structures of apocalmodulin and an apocalmodulin/SK potassium channel gating domain complex. Structure (London, England : 1993) 12, 849-860.
DOI
ScienceOn
|
44 |
Linse, S., Helmersson, A. and Forsen, S. (1991) Calcium binding to calmodulin and its globular domains. J. Biol. Chem. 266, 8050-8054.
|
45 |
Catterall, W. A. (2011) Voltage-gated calcium channels. Cold Spring Harbor Perspectives in Biology 3, 1-23.
|
46 |
Ye, S., Li, Y., Chen, L. and Jiang, Y. (2006) Crystal structures of a ligand-free MthK gating ring: insights into the ligand gating mechanism of channels. Cell 126, 1161-1173.
DOI
ScienceOn
|
47 |
Pau, V. P. T., Abarca-Heidemann, K. and Rothberg, B. S. (2010) Allosteric mechanism of activation and -inhibited gating of the MthK channel. J. Gen. Physiol. 135, 509-526.
DOI
ScienceOn
|
48 |
Zadek, B. and Nimigean, C. M. (2006) Calcium-dependent gating of MthK, a prokaryotic potassium channel. J. Gen. Physiol. 127, 673-685.
DOI
ScienceOn
|
49 |
Cox, D. H. (2006) BKCa-channel structure and function; in Biological Membrane Ion Channels, pp. 171-219, Springer Science+Business Media LLC.
|
50 |
Sweet, T.-B. and Cox, D. H. (2008) Measurements of the BKCa channel's high-affinity binding constants: effects of membrane voltage. J. Gen. Physiol. 132, 491-505.
DOI
ScienceOn
|
51 |
Zhang, X., Solaro, C. R. and Lingle, C. J. (2001) Allosteric regulation of BK channel gating by and through a nonselective, low affinity divalent cation site. J. Gen. Physiol. 118, 607-636.
DOI
|
52 |
Kohler, M., Hirschberg, B., Bond, C. T., Kinzie, J. M., Marrion, N. V., Maylie, J. and Adelman, J. P. (1996) Smallconductance, calcium-activated potassium channels from mammalian brain. Science (New York, NY) 273, 1709-1714.
DOI
ScienceOn
|
53 |
Aggarwal, S. K. and MacKinnon, R. (1996) Contribution of the S4 segment to gating charge in the Shaker channel. Neuron 16, 1169-1177.
DOI
ScienceOn
|
54 |
Sigg, D. and Bezanilla, F. (1997) Total charge movement per channel. The relation between gating charge displacement and the voltage sensitivity of activation. J. Gen. Physiol. 109, 27-39.
DOI
|
55 |
Zhang, G., Huang, S.-Y., Yang, J., Shi, J., Yang, X., Moller, A., Zou, X. and Cui, J. (2010) Ion sensing in the RCK1 domain of BK channels. Proc. Natl. Acad. Sci. U. S. A. 107, 18700-18705.
DOI
ScienceOn
|
56 |
Bao, L., Kaldany, C., Holmstrand, E. C. and Cox, D. H. (2004) Mapping the BKCa channel's " bowl": sidechains essential for sensing. J. Gen. Physiol. 123, 475-489.
DOI
ScienceOn
|
57 |
Bian, S., Favre, I. and Moczydlowski, E. (2001) -binding activity of a COOH-terminal fragment of the Drosophila BK channel involved in -dependent activation. Proc. Natl. Acad. Sci. U. S. A. 98, 4776-4781.
DOI
ScienceOn
|
58 |
Yuan, P., Leonetti, M. D., Pico, A. R., Hsiung, Y. and MacKinnon, R. (2010) Structure of the human BK channel -activation apparatus at 3.0 A resolution. Science (New York, NY) 329, 182-186.
DOI
ScienceOn
|
59 |
Wang, L. and Sigworth, F. J. (2009) Structure of the BK potassium channel in a lipid membrane from electron cryomicroscopy. Nature 461, 292-295.
DOI
ScienceOn
|
60 |
Wu, Y., Yang, Y., Ye, S. and Jiang, Y. (2010) Structure of the gating ring from the human large-conductance -gated channel. Nature 466, 393-397.
DOI
ScienceOn
|
61 |
Jiang, Y., Lee, A., Chen, J., Cadene, M., Chait, B. T. and MacKinnon, R. (2002) Crystal structure and mechanism of a calcium-gated potassium channel. Nature 417, 515-522.
DOI
ScienceOn
|
62 |
Kim, H.-J., Lim, H.-H., Rho, S.-H., Eom, S. H. and Park, C.-S. (2006) Hydrophobic interface between two regulators of conductance domains critical for calcium-dependent activation of large conductance -activated channels. J. Biol. Chem. 281, 38573-38581.
DOI
ScienceOn
|
63 |
Atkinson, N. S., Robertson, G. A. and Ganetzky, B. (1991) A component of calcium-activated potassium channels encoded by the Drosophila slo locus. Science 253, 551-555.
DOI
|
64 |
Meera, P., Wallner, M., Song, M. and Toro, L. (1997) Large conductance voltage- and calcium-dependent channel, a distinct member of voltage-dependent ion channels with seven N-terminal transmembrane segments (S0-S6), an extracellular N terminus, and an intracellular (S9-S10) C terminus. Proc. Natl. Acad. Sci. U. S. A. 94, 14066-14071.
DOI
ScienceOn
|
65 |
Barrett, J. N., Magleby, K. L. and Pallotta, B. S. (1982) Properties of single calcium-activated potassium channels in cultured rat muscle. J. Physiol. (Lond) 331, 211-230.
DOI
|
66 |
Xia, X. M., Zeng, X. and Lingle, C. J. (2002) Multiple regulatory sites in large-conductance calcium-activated potassium channels. Nature 418, 880-884.
DOI
ScienceOn
|
67 |
Cui, J., Cox, D. H. and Aldrich, R. W. (1997) Intrinsic voltage dependence and regulation of mslo large conductance Ca-activated channels. J. Gen. Physiol. 109, 647-673.
DOI
ScienceOn
|
68 |
Shi, J. and Cui, J. (2001) Intracellular enhances the function of BK-type -activated channels. J. Gen. Physiol. 118, 589-606.
DOI
|
69 |
Shi, J., Krishnamoorthy, G., Yang, Y., Hu, L., Chaturvedi, N., Harilal, D., Qin, J. and Cui, J. (2002) Mechanism of magnesium activation of calcium-activated potassium channels. Nature 418, 876-880.
DOI
ScienceOn
|
70 |
Schreiber, M. and Salkoff, L. (1997) A novel calcium-sensing domain in the BK channel. Biophys. J. 73, 1355-1363.
DOI
ScienceOn
|
71 |
Bao, L., Rapin, A. M., Holmstrand, E. C. and Cox, D. H. (2002) Elimination of the BK(Ca) channel's high-affinity sensitivity. J. Gen. Physiol. 120, 173-189.
DOI
|
72 |
Celio, M. R., Pauls, T. L. and Schwaller, B. (1996) Guidebook to the Calcium-binding Proteins. Oxford University Press, Oxford.
|
73 |
Kunzelmann, K., Kongsuphol, P., Chootip, K., Toledo, C., Martins, J. R., Almaça, J., Tian, Y., Witzgall, R., Ousingsawat, J. and Schreiber, R. (2011) Role of the activated Cl- channels bestrophin and anoctamin in epithelial cells. Biol. Chem. 392, 125-134.
DOI
ScienceOn
|
74 |
Ferrera, L., Caputo, A. and Galietta, L. J. V. (2010) TMEM 16A protein: a new identity for -dependent channels. Physiology (Bethesda, Md.) 25, 357-363.
DOI
ScienceOn
|
75 |
Brenner, R., Jegla, T. J., Wickenden, A., Liu, Y. and Aldrich, R. W. (2000) Cloning and functional characterization of novel large conductance calcium-activated potassium channel beta subunits, hKCNMB3 and hKCNMB4. J. Biol. Chem. 275, 6453-6461.
DOI
ScienceOn
|
76 |
Ramsey, I. S., Delling, M. and Clapham, D. E. (2006) An introduction to TRP channels. Annu. Rev. Physiol. 68, 619-647.
DOI
ScienceOn
|
77 |
Lee, U. S. and Cui, J. (2010) BK channel activation: structural and functional insights. Trends Neurosci. 33, 415-423.
DOI
ScienceOn
|
78 |
Butler, A., Tsunoda, S., McCobb, D. P., Wei, A. and Salkoff, L. (1993) mSlo, a complex mouse gene encoding "maxi" calcium-activated potassium channels. Science 261, 221-224.
DOI
|
79 |
McManus, O. B., Helms, L. M., Pallanck, L., Ganetzky, B., Swanson, R. and Leonard, R. J. (1995) Functional role of the beta subunit of high conductance calcium-activated potassium channels. Neuron 14, 645-650.
DOI
ScienceOn
|
80 |
Lu, R., Alioua, A., Kumar, Y., Eghbali, M., Stefani, E. and Toro, L. (2006) MaxiK channel partners: physiological impact. J. Physiol. 570, 65-72.
DOI
ScienceOn
|
81 |
Adelman, J. P., Shen, K. Z., Kavanaugh, M. P., Warren, R. A., Wu, Y. N., Lagrutta, A., Bond, C. T. and North, R. A. (1992) Calcium-activated potassium channels expressed from cloned complementary DNAs. Neuron 9, 209-216.
DOI
ScienceOn
|