Browse > Article
http://dx.doi.org/10.5483/BMBRep.2011.44.10.635

Ca2+-regulated ion channels  

Cox, Daniel H. (Department of Neuroscience, Tufts University School of Medicine)
Publication Information
BMB Reports / v.44, no.10, 2011 , pp. 635-646 More about this Journal
Abstract
Due to its high external and low internal concentration the $Ca^{2+}$ ion is used ubiquitously as an intracellular signaling molecule, and a great many $Ca^{2+}$-sensing proteins have evolved to receive and propagate $Ca^{2+}$ signals. Among them are ion channel proteins, whose $Ca^{2+}$ sensitivity allows internal $Ca^{2+}$ to influence the electrical activity of cell membranes and to feedback-inhibit further $Ca^{2+}$ entry into the cytoplasm. In this review I will describe what is understood about the $Ca^{2+}$ sensing mechanisms of the three best studied classes of $Ca^{2+}$-sensitive ion channels: Large-conductance $Ca^{2+}$-activated $K^+$ channels, small-conductance $Ca^{2+}$-activated $K^+$ channels, and voltage-gated $Ca^{2+}$ channels. Great strides in mechanistic understanding have be made for each of these channel types in just the past few years.
Keywords
BK channel; Calcium; Calcium channel; Calmodulin; SK channel;
Citations & Related Records

Times Cited By Web Of Science : 0  (Related Records In Web of Science)
Times Cited By SCOPUS : 0
연도 인용수 순위
  • Reference
1 Clapham, D. E. (2007) Calcium signaling. Cell 131, 1047-1058.   DOI   ScienceOn
2 Williams, R. J. P. (1999) Calcium as a Cellular Regulator. Oxford University press, Oxford.
3 Kim, E. Y., Rumpf, C. H., Fujiwara, Y., Cooley, E. S., Van Petegem, F. and Minor, D. L. (2008) Structures of CaV2 $Ca^{2+}$/CaM-IQ domain complexes reveal binding modes that underlie calcium-dependent inactivation and facilitation. Structure (London, England : 1993) 16, 1455-1467.   DOI   ScienceOn
4 Mori, M. X., Vander Kooi, C. W., Leahy, D. J. and Yue, D. T. (2008) Crystal structure of the CaV2 IQ domain in complex with $Ca^{2+}$/calmodulin: high-resolution mechanistic implications for channel regulation by $Ca^{2+}$. Structure (London, England : 1993) 16, 607-620.   DOI   ScienceOn
5 Van Petegem, F., Chatelain, F. C. and Minor, D. L. (2005) Insights into voltage-gated calcium channel regulation from the structure of the CaV1.2 IQ domain-$Ca^{2+}$/calmodulin complex. Nat. Struct. Mol. Biol. 12, 1108-1115.   DOI   ScienceOn
6 Cox, D. H. and Dunlap, K. (1994) Inactivation of N-type calcium current in chick sensory neurons: calcium and voltage dependence. J. Gen. Physiol. 104, 311-336.   DOI   ScienceOn
7 Fakler, B. and Adelman, J. P. (2008) Control of K(Ca) channels by calcium nano/microdomains. Neuron 59, 873-881.   DOI   ScienceOn
8 Faber, E. S. L. (2009) Functions and modulation of neuronal SK channels. Cell Biochem. Biophys. 55, 127-139.   DOI   ScienceOn
9 Liang, H., DeMaria, C. D., Erickson, M. G., Mori, M. X., Alseikhan, B. A. and Yue, D. T. (2003) Unified mechanisms of $Ca^{2+}$ regulation across the $Ca^{2+}$ channel family. Neuron 39, 951-960.   DOI   ScienceOn
10 Keen, J. E., Khawaled, R., Farrens, D. L., Neelands, T., Rivard, A., Bond, C. T., Janowsky, A., Fakler, B., Adelman, J. P. and Maylie, J. (1999) Domains responsible for constitutive and $Ca^{2+}$-dependent interactions between calmodulin and small conductance $Ca^{2+}$-activated potassium channels. J. Neurosci. 19, 8830-8838.
11 Erickson, M. G., Alseikhan, B. A., Peterson, B. Z. and Yue, D. T. (2001) Preassociation of calmodulin with voltage-gated $Ca^{2+}$ channels revealed by FRET in single living cells. Neuron 31, 973-985.   DOI   ScienceOn
12 Mori, M. X., Erickson, M. G. and Yue, D. T. (2004) Functional stoichiometry and local enrichment of calmodulin interacting with $Ca^{2+}$ channels. Science (New York, NY) 304, 432-435.   DOI   ScienceOn
13 Zuhlke, R. D., Pitt, G. S., Deisseroth, K., Tsien, R. W. and Reuter, H. (1999) Calmodulin supports both inactivation and facilitation of L-type calcium channels. Nature 399, 159-162.   DOI   ScienceOn
14 Lee, A., Zhou, H., Scheuer, T. and Catterall, W. A. (2003) Molecular determinants of $Ca^{2+}$/calmodulin-dependent regulation of Ca(v)2.1 channels. Proc. Natl. Acad. Sci. U. S. A. 100, 16059-16064.   DOI   ScienceOn
15 Minor, D. L. and Findeisen, F. (2010) Progress in the structural understanding of voltage-gated calcium channel (CaV) function and modulation. Channels (Austin, Tex) 4, 459-474.   DOI   ScienceOn
16 Brehm, P., Eckert, R. and Tillotson, D. (1980) Calciummediated inactivation of calcium current in Paramecium. J. Physiol. 306, 193-203.   DOI
17 Peterson, B. Z., DeMaria, C. D., Adelman, J. P. and Yue, D. T. (1999) Calmodulin is the $Ca^{2+}$ sensor for $Ca^{2+}$-dependent inactivation of L-type calcium channels. Neuron 22, 549-558.   DOI   ScienceOn
18 Fallon, J. L., Halling, D. B., Hamilton, S. L. and Quiocho, F. A. (2005) Structure of calmodulin bound to the hydrophobic IQ domain of the cardiac Ca(v)1.2 calcium channel. Structure (London, England : 1993) 13, 1881-1886.   DOI   ScienceOn
19 Ertel, E. A., Campbell, K. P., Harpold, M. M., Hofmann, F., Mori, Y., Perez-Reyes, E., Schwartz, A., Snutch, T. P., Tanabe, T., Birnbaumer, L., Tsien, R. W. and Catterall, W. A. (2000) Nomenclature of voltage-gated calcium channels. Neuron 25, 533-535.   DOI   ScienceOn
20 Dick, I. E., Tadross, M. R., Liang, H., Tay, L. H., Yang, W. and Yue, D. T. (2008) A modular switch for spatial $Ca^{2+}$ selectivity in the calmodulin regulation of CaV channels. Nature 451, 830-834.   DOI   ScienceOn
21 Lee, A., Wong, S. T., Gallagher, D., Li, B., Storm, D. R., Scheuer, T. and Catterall, W. A. (1999) $Ca^{2+}$/calmodulin binds to and modulates P/Q-type calcium channels. Nature 399, 155-159.   DOI   ScienceOn
22 Borst, J. G. and Sakmann, B. (1998) Facilitation of presynaptic calcium currents in the rat brainstem. J. Physiol. 513 (Pt 1), 149-155.   DOI   ScienceOn
23 Cuttle, M. F., Tsujimoto, T., Forsythe, I. D. and Takahashi, T. (1998) Facilitation of the presynaptic calcium current at an auditory synapse in rat brainstem. J. Physiol. 512 (Pt 3), 723-729.   DOI   ScienceOn
24 DeMaria, C. D., Soong, T. W., Alseikhan, B. A., Alvania, R. S. and Yue, D. T. (2001) Calmodulin bifurcates the local $Ca^{2+}$ signal that modulates P/Q-type $Ca^{2+}$ channels. Nature 411, 484-489.   DOI   ScienceOn
25 Chaudhuri, D., Chang, S. Y., DeMaria, C. D., Alvania, R. S., Soong, T. W. and Yue, D. T. (2004) Alternative splicing as a molecular switch for $Ca^{2+}$/calmodulin-dependent facilitationof P/Q-type $Ca^{2+}$ channels. J. Neurosci. 24, 6334-6342.   DOI   ScienceOn
26 Zuhlke, R. D., Pitt, G. S., Tsien, R. W. and Reuter, H. (2000) $Ca^{2+}$-sensitive inactivation and facilitation of L-type $Ca^{2+}$ channels both depend on specific amino acid residues in a consensus calmodulin-binding motif in the(alpha)1C sub-unit. J. Biol. Chem. 275, 21121-21129.   DOI   ScienceOn
27 Chaudhuri, D., Issa, J. B. and Yue, D. T. (2007) Elementary mechanisms producing facilitation of Cav2.1 (P/Q-type) channels. J. Gen. Physiol. 129, 385-401.   DOI   ScienceOn
28 Dunlap, K. (2007) Calcium Channels Are Models of Self- Control. J. Gen. Physiol. 129, 379-383.   DOI   ScienceOn
29 Imredy, J. P. and Yue, D. T. (1994) Mechanism of $Ca^{2+}$-sensitive inactivation of L-type $Ca^{2+}$ channels. Neuron 12, 1301-1318.   DOI   ScienceOn
30 Lee, A., Scheuer, T. and Catterall, W. A. (2000) $Ca^{2+}$/calmodulin- dependent facilitation and inactivation of P/Q-type $Ca^{2+}$ channels. J. Neurosci. 20, 6830-6838.
31 Tadross, M. R., Dick, I. E. and Yue, D. T. (2008) Mechanism of local and global $Ca^{2+}$ sensing by calmodulin in complex with a $Ca^{2+}$ channel. Cell 133, 1228-1240.   DOI   ScienceOn
32 Lacinova, L. (2005) Voltage-dependent calcium channels. Gen. Physiol. Biophys. 24 (Suppl 1), 1-78.   DOI
33 Alseikhan, B. A., DeMaria, C. D., Colecraft, H. M. and Yue, D. T. (2002) Engineered calmodulins reveal the unexpected eminence of $Ca^{2+}$ channel inactivation in controlling heart excitation. Proc. Natl. Acad. Sci. U. S. A. 99, 17185-17190.   DOI   ScienceOn
34 Catterall, W. A. and Few, A. P. (2008) Calcium channel regulation and presynaptic plasticity. Neuron 59, 882-901.   DOI   ScienceOn
35 Chaudhuri, D., Alseikhan, B. A., Chang, S. Y., Soong, T. W. and Yue, D. T. (2005) Developmental activation of calmodulin-dependent facilitation of cerebellar P-type $Ca^{2+}$ current. J. Neurosci. 25, 8282-8294.   DOI   ScienceOn
36 Ishii, T. M., Silvia, C., Hirschberg, B., Bond, C. T., Adelman, J. P. and Maylie, J. (1997) A human intermediate conductance calcium-activated potassium channel. Proc. Natl. Acad. Sci. U.S.A. 94, 11651-11656.   DOI
37 Xia, X. M., Fakler, B., Rivard, A., Wayman, G., Johnson- Pais, T., Keen, J. E., Ishii, T., Hirschberg, B., Bond, C. T., Lutsenko, S., Maylie, J. and Adelman, J. P. (1998) Mechanism of calcium gating in small-conductance calcium-activated potassium channels. Nature 395, 503-507.   DOI   ScienceOn
38 Yap, K. L., Kim, J., Truong, K., Sherman, M., Yuan, T. and Ikura, M. (2000) Calmodulin target database. J. Struct. Funct. Genomics 1, 8-14.   DOI
39 Yap, K. L., Ames, J. B., Swindells, M. B. and Ikura, M. (1999) Diversity of conformational states and changes within the EF-hand protein superfamily. Proteins 37, 499-507.   DOI   ScienceOn
40 Bahler, M. and Rhoads, A. (2002) Calmodulin signaling via the IQ motif. FEBS Lett. 513, 107-113.   DOI   ScienceOn
41 Stefan, M. I., Edelstein, S. J. and Le Novère, N. (2008) An allosteric model of calmodulin explains differential activation of PP2B and CaMKII. Proc. Natl. Acad. Sci. U. S. A. 105, 10768-10773.   DOI   ScienceOn
42 Schumacher, M. A., Rivard, A. F., Bachinger, H. P. and Adelman, J. P. (2001) Structure of the gating domain of a $Ca^{2+}$-activated $K^+$ channel complexed with $Ca^{2+}$/calmodulin. Nature 410, 1120-1124.   DOI   ScienceOn
43 Schumacher, M. A., Crum, M. and Miller, M. C. (2004) Crystal structures of apocalmodulin and an apocalmodulin/SK potassium channel gating domain complex. Structure (London, England : 1993) 12, 849-860.   DOI   ScienceOn
44 Linse, S., Helmersson, A. and Forsen, S. (1991) Calcium binding to calmodulin and its globular domains. J. Biol. Chem. 266, 8050-8054.
45 Catterall, W. A. (2011) Voltage-gated calcium channels. Cold Spring Harbor Perspectives in Biology 3, 1-23.
46 Ye, S., Li, Y., Chen, L. and Jiang, Y. (2006) Crystal structures of a ligand-free MthK gating ring: insights into the ligand gating mechanism of $K^+$ channels. Cell 126, 1161-1173.   DOI   ScienceOn
47 Pau, V. P. T., Abarca-Heidemann, K. and Rothberg, B. S. (2010) Allosteric mechanism of $Ca^{2+}$ activation and $H^+$-inhibited gating of the MthK $K^+$ channel. J. Gen. Physiol. 135, 509-526.   DOI   ScienceOn
48 Zadek, B. and Nimigean, C. M. (2006) Calcium-dependent gating of MthK, a prokaryotic potassium channel. J. Gen. Physiol. 127, 673-685.   DOI   ScienceOn
49 Cox, D. H. (2006) BKCa-channel structure and function; in Biological Membrane Ion Channels, pp. 171-219, Springer Science+Business Media LLC.
50 Sweet, T.-B. and Cox, D. H. (2008) Measurements of the BKCa channel's high-affinity $Ca^{2+}$ binding constants: effects of membrane voltage. J. Gen. Physiol. 132, 491-505.   DOI   ScienceOn
51 Zhang, X., Solaro, C. R. and Lingle, C. J. (2001) Allosteric regulation of BK channel gating by $Ca^{2+}$ and $Mg^{2+}$ through a nonselective, low affinity divalent cation site. J. Gen. Physiol. 118, 607-636.   DOI
52 Kohler, M., Hirschberg, B., Bond, C. T., Kinzie, J. M., Marrion, N. V., Maylie, J. and Adelman, J. P. (1996) Smallconductance, calcium-activated potassium channels from mammalian brain. Science (New York, NY) 273, 1709-1714.   DOI   ScienceOn
53 Aggarwal, S. K. and MacKinnon, R. (1996) Contribution of the S4 segment to gating charge in the Shaker $K^+$channel. Neuron 16, 1169-1177.   DOI   ScienceOn
54 Sigg, D. and Bezanilla, F. (1997) Total charge movement per channel. The relation between gating charge displacement and the voltage sensitivity of activation. J. Gen. Physiol. 109, 27-39.   DOI
55 Zhang, G., Huang, S.-Y., Yang, J., Shi, J., Yang, X., Moller, A., Zou, X. and Cui, J. (2010) Ion sensing in the RCK1 domain of BK channels. Proc. Natl. Acad. Sci. U. S. A. 107, 18700-18705.   DOI   ScienceOn
56 Bao, L., Kaldany, C., Holmstrand, E. C. and Cox, D. H. (2004) Mapping the BKCa channel's "$Ca^{2+}$ bowl": sidechains essential for $Ca^{2+}$ sensing. J. Gen. Physiol. 123, 475-489.   DOI   ScienceOn
57 Bian, S., Favre, I. and Moczydlowski, E. (2001) $Ca^{2+}$-binding activity of a COOH-terminal fragment of the Drosophila BK channel involved in $Ca^{2+}$-dependent activation. Proc. Natl. Acad. Sci. U. S. A. 98, 4776-4781.   DOI   ScienceOn
58 Yuan, P., Leonetti, M. D., Pico, A. R., Hsiung, Y. and MacKinnon, R. (2010) Structure of the human BK channel $Ca^{2+}$-activation apparatus at 3.0 A resolution. Science (New York, NY) 329, 182-186.   DOI   ScienceOn
59 Wang, L. and Sigworth, F. J. (2009) Structure of the BK potassium channel in a lipid membrane from electron cryomicroscopy. Nature 461, 292-295.   DOI   ScienceOn
60 Wu, Y., Yang, Y., Ye, S. and Jiang, Y. (2010) Structure of the gating ring from the human large-conductance $Ca^{2+}$-gated $K^{+}$ channel. Nature 466, 393-397.   DOI   ScienceOn
61 Jiang, Y., Lee, A., Chen, J., Cadene, M., Chait, B. T. and MacKinnon, R. (2002) Crystal structure and mechanism of a calcium-gated potassium channel. Nature 417, 515-522.   DOI   ScienceOn
62 Kim, H.-J., Lim, H.-H., Rho, S.-H., Eom, S. H. and Park, C.-S. (2006) Hydrophobic interface between two regulators of $K^+$ conductance domains critical for calcium-dependent activation of large conductance $Ca^{2+}$-activated $K^+$ channels. J. Biol. Chem. 281, 38573-38581.   DOI   ScienceOn
63 Atkinson, N. S., Robertson, G. A. and Ganetzky, B. (1991) A component of calcium-activated potassium channels encoded by the Drosophila slo locus. Science 253, 551-555.   DOI
64 Meera, P., Wallner, M., Song, M. and Toro, L. (1997) Large conductance voltage- and calcium-dependent $K^+$ channel, a distinct member of voltage-dependent ion channels with seven N-terminal transmembrane segments (S0-S6), an extracellular N terminus, and an intracellular (S9-S10) C terminus. Proc. Natl. Acad. Sci. U. S. A. 94, 14066-14071.   DOI   ScienceOn
65 Barrett, J. N., Magleby, K. L. and Pallotta, B. S. (1982) Properties of single calcium-activated potassium channels in cultured rat muscle. J. Physiol. (Lond) 331, 211-230.   DOI
66 Xia, X. M., Zeng, X. and Lingle, C. J. (2002) Multiple regulatory sites in large-conductance calcium-activated potassium channels. Nature 418, 880-884.   DOI   ScienceOn
67 Cui, J., Cox, D. H. and Aldrich, R. W. (1997) Intrinsic voltage dependence and $Ca^{2+}$ regulation of mslo large conductance Ca-activated $K^+$ channels. J. Gen. Physiol. 109, 647-673.   DOI   ScienceOn
68 Shi, J. and Cui, J. (2001) Intracellular $Mg^{2+}$ enhances the function of BK-type $Ca^{2+}$-activated $K^+$ channels. J. Gen. Physiol. 118, 589-606.   DOI
69 Shi, J., Krishnamoorthy, G., Yang, Y., Hu, L., Chaturvedi, N., Harilal, D., Qin, J. and Cui, J. (2002) Mechanism of magnesium activation of calcium-activated potassium channels. Nature 418, 876-880.   DOI   ScienceOn
70 Schreiber, M. and Salkoff, L. (1997) A novel calcium-sensing domain in the BK channel. Biophys. J. 73, 1355-1363.   DOI   ScienceOn
71 Bao, L., Rapin, A. M., Holmstrand, E. C. and Cox, D. H. (2002) Elimination of the BK(Ca) channel's high-affinity $Ca^{2+}$ sensitivity. J. Gen. Physiol. 120, 173-189.   DOI
72 Celio, M. R., Pauls, T. L. and Schwaller, B. (1996) Guidebook to the Calcium-binding Proteins. Oxford University Press, Oxford.
73 Kunzelmann, K., Kongsuphol, P., Chootip, K., Toledo, C., Martins, J. R., Almaça, J., Tian, Y., Witzgall, R., Ousingsawat, J. and Schreiber, R. (2011) Role of the $Ca^{2+}$activated Cl- channels bestrophin and anoctamin in epithelial cells. Biol. Chem. 392, 125-134.   DOI   ScienceOn
74 Ferrera, L., Caputo, A. and Galietta, L. J. V. (2010) TMEM 16A protein: a new identity for $Ca^{2+}$-dependent $Cl^-$ channels. Physiology (Bethesda, Md.) 25, 357-363.   DOI   ScienceOn
75 Brenner, R., Jegla, T. J., Wickenden, A., Liu, Y. and Aldrich, R. W. (2000) Cloning and functional characterization of novel large conductance calcium-activated potassium channel beta subunits, hKCNMB3 and hKCNMB4. J. Biol. Chem. 275, 6453-6461.   DOI   ScienceOn
76 Ramsey, I. S., Delling, M. and Clapham, D. E. (2006) An introduction to TRP channels. Annu. Rev. Physiol. 68, 619-647.   DOI   ScienceOn
77 Lee, U. S. and Cui, J. (2010) BK channel activation: structural and functional insights. Trends Neurosci. 33, 415-423.   DOI   ScienceOn
78 Butler, A., Tsunoda, S., McCobb, D. P., Wei, A. and Salkoff, L. (1993) mSlo, a complex mouse gene encoding "maxi" calcium-activated potassium channels. Science 261, 221-224.   DOI
79 McManus, O. B., Helms, L. M., Pallanck, L., Ganetzky, B., Swanson, R. and Leonard, R. J. (1995) Functional role of the beta subunit of high conductance calcium-activated potassium channels. Neuron 14, 645-650.   DOI   ScienceOn
80 Lu, R., Alioua, A., Kumar, Y., Eghbali, M., Stefani, E. and Toro, L. (2006) MaxiK channel partners: physiological impact. J. Physiol. 570, 65-72.   DOI   ScienceOn
81 Adelman, J. P., Shen, K. Z., Kavanaugh, M. P., Warren, R. A., Wu, Y. N., Lagrutta, A., Bond, C. T. and North, R. A. (1992) Calcium-activated potassium channels expressed from cloned complementary DNAs. Neuron 9, 209-216.   DOI   ScienceOn