• Title/Summary/Keyword: Exterior orientation parameters

Search Result 91, Processing Time 0.028 seconds

Stability Analysis of DMC's Block Geometry (DMC 카메라의 블록기하 안정성 분석)

  • Lee, Jae One;Lee, Dong Min
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.29 no.6D
    • /
    • pp.771-779
    • /
    • 2009
  • Digital topographical maps used for GIS DB are mainly produced by the traditional way of analogue aerial photogrammetry. Therefore, analogue photos are only available for digital mapping after preprocessing such as film developing, printing and scanning. However, digital aerial camera is able to get digital image directly without preprocessing and thus the performance and efficiency of photogrammetry are extremely increased. This study aims to investigate geometric stability of digital aerial frame camera DMC (Digital Modular Camera). In order to verify the geometric stability of digital aerial camera DMC, some different block conditions with and without cross strips, GPS/INS data and variation of GCPs are introduced in the block adjustment. The accuracy results of every block condition were compared each other by computation of residuals of exterior orientation (EO) parameters. Results of study shows that the geometric stability of the block adjustment with cross strips is increased about 30% against without cross strips. The accuracy of EO parameters of block adjustment with cross strips is also increased about 2cm for X-coordinate, 3cm for Y-coordinate, 3cm for Z-coordinate, and 6" for omega, 4" for phi and 3" for kappa.

Comparative Analysis of Focal Length Bias for Three Different Line Scanners (초점거리 편의가 지상 정확도에 미치는 영향 비교 연구 - 세가지 라인 스캐너를 대상으로 -)

  • Kim, Changjae
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.32 no.4_1
    • /
    • pp.363-371
    • /
    • 2014
  • Most space-borne optical scanning systems adopt linear arrayconfigurations. The well-knownthree different types of space-borne sensors arealong-track line scanner, across-track linescanner, and three line scanner. To acquire accurate location information of an object on the ground withthose sensors, the exterior and interior orientation parameters are critical factors for both of space-borne and airborne missions. Since the imaging geometry of sensors mightchange time to time due to thermal influence, vibration, and wind, it is very important to analyze the Interior Orientation Parameters (IOP) effects on the ground. The experiments based on synthetic datasets arecarried out while the focal length biases are changing. Also, both high and low altitudes of the imagingsensor were applied. In case with the along-track line scanner, the focal length bias caused errors along the scanline direction. In the other case with the across-track one, the focal length bias caused errors alongthe scan line and vertical directions. Lastly, vertical errors were observed in the case ofthree-line scanner. Those results from this study will be able to provide the guideline for developing new linearsensors, so as for improving the accuracy of laboratory or in-flight sensor calibrations.

Positioning Accuracy Analysis of KOMPSAT-3 Satellite Imagery by RPC Adjustment (RPC 조정에 의한 KOMPSAT-3 위성영상의 위치결정 정확도 분석)

  • Lee, Hyoseong;Seo, Doochun;Ahn, Kiweon;Jeong, Dongjang
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.31 no.6_1
    • /
    • pp.503-509
    • /
    • 2013
  • The KOMPSAT-3 (Korea Multi-Purpose Satellite-3), was launched on May 18, 2012, is an optical high-resolution observation mission of the Korea Aerospace Research Institute and provides RPC(Rational Polynomial Coefficient) for ground coordinate determination. It is however need to adjust because RPC absorbs effects of interior-exterior orientation errors. In this study, to obtain the suitable adjustment parameters of the vendor-provided RPC of the KOMPSAT-3 images, six types of adjustment models were implemented. As results, the errors of two and six adjustment parameters differed approximately 0.1m. We thus propose the two parameters model, the number of control points are required the least, to adjust the KOMPSAT-3 R PC. According to the increasing the number of control points, RPC adjustment was performed. The proposed model with a control point particularly did not exceed a maximum error 3m. As demonstrated in this paper, the two parameters model can be applied in RPC adjustment of KOMPSAT-3 stereo image.

A Study on Determination of the Matching Size of IKONOS Stereo Imagery (IKONOS 스테레오 영상의 매칭사이즈 결정연구)

  • Lee, Hyo-Seong;Ahn, Ki-Weon;Lee, Chang-No;Seo, Doo-Cheon
    • Proceedings of the Korean Society of Surveying, Geodesy, Photogrammetry, and Cartography Conference
    • /
    • 2007.04a
    • /
    • pp.201-205
    • /
    • 2007
  • In the post-Cold War era, acquisition technique of high-resolution satellite imagery (HRSI) has begun to commercialize. IKONOS-2 satellite imaging data is supplied for the first time in the 21st century. Many researchers testified mapping possibility of the HRSI data instead of aerial photography. It is easy to renew and automate a topographical map because HRSI not only can be more taken widely and periodically than aerial photography, but also can be directly supplied as digital image. In this study matching size of IKONOS Geo-level stereo image is presented lot production of digital elevation model (DEM). We applied area based matching method using correlation coefficient of pixel brightness value between the two images. After matching line (where "matching line" implies straight line that is approximated to complex non-linear epipolar geometry) is established by exterior orientation parameters (EOPs) to minimize search area, the matching is tarried out based on this line. The experiment on matching size is performed according to land cover property, which is divided off into four areas (water, urban land, forest land and agricultural land). In each of the test areas, window size for the highest correlation coefficient is selected as propel size for matching. As the results of experiment, the proper size was selected as $123{\times}123$ pixels window, $13{\times}13$ pixels window, $129{\times}129$ pixels window and $81{\times}81$ pixels window in the water area, urban land, forest land and agricultural land, respectively. Of course, determination of the matching size by the correlation coefficient may be not absolute appraisal method. Optimum matching size using the geometric accuracy therefore, will be presented by the further work.

  • PDF

Matching Size Determination According to Land Cover Property of IKONOS Stereo Imagery (IKONOS 입체영상의 토지피복 특성에 따른 정합영역 크기 결정)

  • Lee, Hyo-Seong;Park, Byung-Uk;Lee, Byung-Gil;Ahn, Ki-Weon
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.25 no.6_2
    • /
    • pp.587-597
    • /
    • 2007
  • This study determines matching size for digital elevation model (DEM) production according to land cover property from IKONOS Geo-level stereo image. We applied area based matching method using correlation coefficient of pixel brightness value between the two images. After matching line (where "matching line" implies straight line that is approximated to complex non-linear epipolar geometry) is established by exterior orientation parameters to minimize search area, the matching is carried out based on this line. The experiment is performed according to land cover property, which is divided off into four areas (water, urban land, forest land and agricultural land). In each of the test areas, matching size is selected using a correlation-coefficient image and parallax image. As the results, optimum matching size of the images was selected as $81{\times}81$ pixels window, $21{\times}21$ pixels window, $119{\times}119$ pixels window and $51{\times}51$ pixels window in the water area, urban land, forest land and agricultural land, respectively.

Application of CCD Image by Direct Georeferencing (Direct Georeferencing에 의한 CCD 영상의 적용기법)

  • Song Youn Kyung;Park Woon Yong;Park Hong Gi
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.23 no.1
    • /
    • pp.77-88
    • /
    • 2005
  • Direct Georeferencing (DG) is based on the direct measurement of the projection centers and rotation angle of sensor through loading the GPS and INS in aircraft. The methods can offer us to acquire the exterior orientation parameters with only minimum GCPs, even the ground control process could be completely skipped. In this study, a CCD camera is simultaneously used in GPS/INS, and acquired CCD image through Direct Georeferencing produce digital orthoimage. In this process, methods of combining sensor and digital orthoimage are examined and estimated. For the comparison of the positioning accuracy digital orthoimage through Direct Georeferencing, GCPs determined by GPS surveying are used. Two digital orthoimage are produced; one with a few GCP and the other without them. The produced maps can be used to correct or revised 1:1,000 or 1:5,000 scale maps accordingly.

Accuracy of Combined Block Adjustment with GPS-Permanentstation (GPS 연속관측점을 이용한 결합블럭조정의 정확도)

  • 박운용;이재원;신상철
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.17 no.1
    • /
    • pp.21-32
    • /
    • 1999
  • Mapping and precise point determination by photogrammetry have been shown to be an economic solution. But control points are necessary to determine the exterior orientation parameters. Although the number of required control points has been reduced based on extended bundle adjustment and reinforced cross-strip, the ground survey is a significant factor of whole expenses in photogrammetry. The status of GPS-photogrammetry with kinematic DGPS-positioning to overcome this disadvantages, is now steadly progressive since the first possibility has been proved. The completed satellite configuration, powerful receiver function and upgraded software for kinematic DGPS-positioning have extensively improved the accuracy of combined bundle adjustment. So the research for the operational use of GPS-photogrammetry is absolutely necessary. The presented test field was designed for identification of subsidences in a coal mining area, flown with 60% sidelap and cross strips. Just with 6 control points and combined block adjustment instead of the traditionally used 21 horizontal and 81 vertical control points the same ground accuracy has been reached. The accuracy of kinematic GPS-positioning and combined block adjustment was independent upon the distance of the ground reference station. It also has been showed that the special model for the systematic error correction in the combined block adjustment.

  • PDF

A Study on Direct Georeferencing by Combined Multi-sensor (다중센서 결합에 의한 외부표정요소 직접결정기법에 관한 연구)

  • Song, Youn-Kyung
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.8 no.1
    • /
    • pp.88-95
    • /
    • 2005
  • Direct Georeferencing by combined multi-sensor based on the direct measurement of the projection centers and rotation angle of sensor through loading the GPS and INS in aircraft. The method of combined multi-sensor can offer us to acquire the exterior orientation parameters with only minimum GCPs, even the ground control process could be completely skipped. Consequently, It is possible extreme to reduce the time and expense for the mapping process. In this study, a CCD camera is simultaneously used in combined multi-sensor surveying, and acquired CCD image through Direct Georeferencing produce digital orthoimage. In this process, methods of combining sensor and digital orthoimage are examined and estimated. For the comparison of the positioning accuracy digital orthoimage through Direct Georeferencing, GCPs determined by GPS surveying are used. Two digital orthoimage are produced; one with a few GCP and the other without them. The accuracy of orthoimages produced through combined multi-sensor with GCPs meets that of 1:1,000 maps. Without GCPs, it meets that of 1:5,000 maps.

  • PDF

Epipolar Resampling for High Resolution Satellite Imagery Based on Parallel Projection (평행투영 기반의 고해상도 위성영상 에피폴라 재배열)

  • Noh, Myoung-Jong;Cho, Woo-Sug;Chang, Hwi-Jeong;Jeong, Ji-Yeon
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.15 no.4
    • /
    • pp.81-88
    • /
    • 2007
  • The geometry of satellite image captured by linear CCD sensor is different from that of frame camera image. The fact that the exterior orientation parameters for satellite image with linear CCD sensor varies from scan line by scan line, causes the difference of image geometry between frame and linear CCD sensor. Therefore, we need the epipolar geometry for linear CCD image which differs from that of frame camera image. In this paper, we proposed a method of resampling linear CCD satellite image in epipolar geometry under the assumption that image is not formed in perspective projection but in parallel projection, and the sensor model is a 2D affine sensor model based on parallel projection. For the experiment, IKONOS stereo images, which are high resolution linear CCD images, were used and tested. As results, the spatial accuracy of 2D affine sensor model is investigated and the accuracy of epipolar resampled image with RFM was presented.

  • PDF

Automatic Extraction of 3-Dimensional Road Information Using Road Pavement Markings (도로 노면표지를 이용한 3차원 도로정보 자동추출)

  • Kim, Jin-Gon;Han, Dong-Yeub;Yu, Ki-Yun;Kim, Yong-Il
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.12 no.4 s.31
    • /
    • pp.61-68
    • /
    • 2004
  • In this paper, we suggest an automatic technique to obtain 3-D road information in complex urban areas using road pavement markings. This method is composed of following three main steps. The first step is extracting the pavement markings from aerial images, the second one is matching the same pavement markings in two aerial images, and the last one is obtaining the 3-D coordinates of those using EOP(exterior orientation parameters) of aerial images. Here, we focus on the first and second step because the last step can be performed by using the well hewn collinearity condition equation. We used geometric properties and spatial relationships of the pavement markings to extract the lane line markings on the images and extracted arrow lane markings additionally using template matching. And then, we obtained 3-D coordinates of the road using relational matching for the pavement markings. In order to evaluate the accuracy of extraction, we did a visual inspection and compared the result of this technique with those measured by digital photogrammetric system.

  • PDF