• Title/Summary/Keyword: Exterior orientation parameters

Search Result 91, Processing Time 0.024 seconds

A Study on the Three Dimensional Coordinates Analysis by Direct Linear Transformation (직접선형변환을 이용한 3차원 좌표해석에 관한 연구)

  • 김감래;이호남
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.5 no.2
    • /
    • pp.47-55
    • /
    • 1987
  • In this paper, the direct linear transformation is described in which a inner and exterior orientation parameters are treated as unknown for non-iterative direct space resection, and the computer program was developed to obtain object space coordinates. Image coordinates measurements are conducted with analogue stereo-plotter and digitizer. To prove the appropriateness of the two image coordinate measurement devices and the DLT method, the standard errors of object space coordinates are compared with semi-analytical method.

  • PDF

Ortho-rectification of a Digital Aerial Image using LiDAR-derived Elevation Model in Forested Area

  • Yoon, Jong-Suk
    • Korean Journal of Remote Sensing
    • /
    • v.24 no.5
    • /
    • pp.463-471
    • /
    • 2008
  • The quality of orthoimages mainly depends on the elevation information and exterior orientation (EO) parameters. Since LiDAR data directly provides the elevation information over the earth's surface including buildings and trees, the concept of true orthorectification has been rapidly developed and implemented. If a LiDAR-driven digital surface model (DSM) is used for orthorectification, the displacements caused by trees and buildings are effectively removed when compared with the conventional orthoimages processed with a digital elevation model (DEM). This study utilized LiDAR data to generate orthorectified digital aerial images. Experimental orthoimages were produced using digital terrain model (DTM) and DSM. For the preparation of orthorectification, EO components, one of the inputs for orthorectification, were adjusted with the ground control points (GCPs) collected from the LiDAR point data, and the ground points were extracted by a filtering method used in a previous research. The orthoimage generated by DSM corresponded more closely to non-ground LiDAR points than the orthoimage produced by DTM.

Soil Deformation Tracking in Model Chamber by Targetless Close-Range Photogrammetry (무타겟 사진측량 기반 모형 토조 내 지반 변위 측정)

  • Lee, Chang No;Oh, Jae Hong
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.37 no.6
    • /
    • pp.555-562
    • /
    • 2019
  • This paper presents soil deformation measurement in model chamber based on photogrammetry. We created an aluminum framed acrylic model chamber with soil inside and applied photogrammetry to measure soil deformation caused by loading tests. The soil consists of 40% black and 60% regular sand to create image contrast in soil images. In preprocessing, the self camera calibration was carried out for IOPs (Interior Orientation Parameters), followed by the space resection to estimate EOPs (Exterior Orientation Parameters) using control points located along the aluminum frame. Image matching was applied to measure the soil displacement. We tested different matching window sizes and the effect of image smoothing. Experimental results showed that 65x65 pixels of window size produced better soil deformation map and the image smoothing was useful to suppress the matching outliers. In conclusion, photogrammetry was able to efficiently generated soil deformation map.

Analysis on 3D Positioning Precision Using Mobile Mapping System Images in Photograrmmetric Perspective (사진측량 관점에서 차량측량시스템 영상을 이용한 3차원 위치의 정밀도 분석)

  • 조우석;황현덕
    • Korean Journal of Remote Sensing
    • /
    • v.19 no.6
    • /
    • pp.431-445
    • /
    • 2003
  • In this paper, we experimentally investigated the precision of 3D positioning using 4S-Van images in photograrmmetric perspective. The 3D calibration target was built over building facade outside and was captured separately by two CCD cameras installed in 4S-Van. After then, we determined the interior orientation parameter for each CCD camera through self-calibration technique. With the interior orientation parameter computed, the bundle adjustment was performed to obtain the exterior orientation parameters simultaneously for two CCD cameras using calibration target image and object coordinates. The reverse lens distortion coefficients were computed and acquired by least squares method so as to introduce lens distortion into epipolar line. It was shown that the reverse lens distortion coefficients could transform image coordinates into lens distorted image coordinates within about 0.5 pixel. The proposed semi-automatic matching scheme incorporated with lens distorted epipolar line was implemented with scene images captured by 4S-Van in moving. The experimental results showed that the precision of 3D positioning from 4S-Van images in photograrmmetric perspective is within 2cm in the range of 20m from the camera.

The Accuracy of Stereo Digital Camera Photogrammetry (스테레오 디지털 카메라를 이용한 사진측량의 정확도)

  • Kim, Gi-Hong;Youn, Jun-Hee;Park, Ha-Jin
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.28 no.6
    • /
    • pp.663-668
    • /
    • 2010
  • In this study a stereo digital camera system was developed. Using this system, we can collect informations such as coordinates, lengths of all objects shown in the photo image just by taking digital photograph in field. This system has the advantage of obtaining stereo images with settled exterior orientation parameters, while the accuracy slightly worsen because in a close range photogrammetry with stereo digital camera system, the base line distance is restricted within about 1m. We took images with various exposure distances and angles to objects for experimental error assessment, and analyzed the affection of image coordinates errors.

Generation of Ortho-Image of Close-Range Photographs by Digital Image Processing Technique (수치화상처리기법을 이용한 지상사진의 정사투영화상의 작성)

  • Ahn, Ki Won
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.13 no.5
    • /
    • pp.191-199
    • /
    • 1993
  • Investigation is given to the detailed procedure of a computer assisted automatic technique for ortho-image generation from digital stereo image data of close-range photographs scanned by the CCD camera scanner. After rectification of geometric scanning errors, the bundle adjustment technique was used to determine the exterior orientation parameters of terrestrial camera. An automatic correlation matching technique was applied to search for the conjugate pixels in digital stereo pairs. And the 3-dimensional coordinates of the corresponding pixels were calculated by the space intersection method. For the generation of ortho-image from the calculated coordinates and right image data values, inverse-weighted-distance average method was used. And the accuracy of the resulting ortho-image was checked by comparing its image coordinates with there corresponding ground coordinates for the check points.

  • PDF

IKONOS Stereo Matching with Land Cover Map for DEM Generation

  • Lee, Hyo-Seong;Ahn, Ki-Weon;Park, Byung-Guk;Han, Dong-Yeob
    • Proceedings of the KSRS Conference
    • /
    • 2007.10a
    • /
    • pp.580-583
    • /
    • 2007
  • Various matching methods have been introduced by investigators to improve digital elevation model (DEM) accuracy of satellite imagery. This study proposed an area-based matching method according to land cover property using correlation coefficient of pixel brightness value between the two images for DEM generation from IKONOS stereo imagery. For this, matching line (where "matching line" implies straight line that is approximated to complex nonlinear epipolar geometry) is established by exterior orientation parameters to minimize search area. The matching is carried out based on this line. Land cover classes are divided off into water, urban land, forest and agricultural land. Matching size is selected using a correlation-coefficient image in the four areas. The selected sizes are $81{\times}81$ pixels window, $21{\times}21$ pixels window, $119{\times}119$ pixels window and $51{\times}51$ pixels window in the water area, urban land, forest land and agricultural land, respectively. And hence, DEM is generated from IKONOS stereo imagery using the selected matching sizes and land cover map on the four types.

  • PDF

Modeling Methods for SPOT-5 HRG Stereo Pair Images (SPOT-5(HRG) 입체위성영상의 3차원 모델링 기법 연구)

  • 최선용;신대식;이용웅
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.21 no.3
    • /
    • pp.255-260
    • /
    • 2003
  • In this paper, we generate the 3D geometric sensor model of SPOT-5 HRG stereo images which are processed in Supermode and have 2.5m ground spatial resolution, and calculate the RPC(Rational Polynomial Coefficients) for acquisition of topographic information using the exterior orientation parameters which are determined in the 3D geometric sensor modelling process. It is shown that SPOT-5 images can be modelled with me 3.3m accuracy by the bundle adjustment method used to model the existing SPOT series. Considering the accuracy of RPC's results with rmse 0.03m accuracy, the RPC model can replace the sensor model, if we emphasize the simplification and the cost.

Registration of Aerial Image with Lines using RANSAC Algorithm

  • Ahn, Y.;Shin, S.;Schenk, T.;Cho, W.
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.25 no.6_1
    • /
    • pp.529-536
    • /
    • 2007
  • Registration between image and object space is a fundamental step in photogrammetry and computer vision. Along with rapid development of sensors - multi/hyper spectral sensor, laser scanning sensor, radar sensor etc., the needs for registration between different sensors are ever increasing. There are two important considerations on different sensor registration. They are sensor invariant feature extraction and correspondence between them. Since point to point correspondence does not exist in image and laser scanning data, it is necessary to have higher entities for extraction and correspondence. This leads to modify first, existing mathematical and geometrical model which was suitable for point measurement to line measurements, second, matching scheme. In this research, linear feature is selected for sensor invariant features and matching entity. Linear features are incorporated into mathematical equation in the form of extended collinearity equation for registration problem known as photo resection which calculates exterior orientation parameters. The other emphasis is on the scheme of finding matched entities in the aide of RANSAC (RANdom SAmple Consensus) in the absence of correspondences. To relieve computational load which is a common problem in sampling theorem, deterministic sampling technique and selecting 4 line features from 4 sectors are applied.

Analysis of Factors Affecting Performance of Integrated INS/SPR Positioning during GPS Signal Blockage

  • Kang, Beom Yeon;Han, Joong-hee;Kwon, Jay Hyoun
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.32 no.6
    • /
    • pp.599-606
    • /
    • 2014
  • Since the accuracy of Global Positioning System (GPS)-based vehicle positioning system is significantly degraded or does not work appropriately in the urban canyon, the integration techniques of GPS with Inertial Navigation System (INS) have intensively been developed to improve the continuity and reliability of positioning. However, its accuracy is degraded as INS errors are not properly corrected due to the GPS signal blockage. Recently, the image-based positioning techniques have been started to apply for the vehicle positioning for the advanced in processing techniques as well as the increased the number of cars installing the camera. In this study, Single Photo Resection (SPR), which calculates the camera exterior orientation parameters using the Ground Control Points (GCPs,) has been integrated with the INS/GPS for continuous and stable positioning. The INS/GPS/SPR integration was implemented in both of a loosely and a tightly coupled modes, based on the Extended Kalman Filter (EKF). In order to analyze the performance of INS/SPR integration during the GPS outage, the simulation tests were conducted with a consideration of factors affecting SPR performance. The results demonstrate that the accuracy of INS/SPR integration is depended on magnitudes of the GCP errors and SPR processing intervals. Additionally, the simulation results suggest some required conditions to achieve accurate and continuous positioning, used the INS/SPR integration.