• Title/Summary/Keyword: Exterior Blind

Search Result 18, Processing Time 0.019 seconds

Evaluation of Thermal and Visual Environment for the Glazing and Shading Device in an Office Building with Installed of Venetian Blind (베네시안 블라인드가 적용된 오피스 건물의 외피 투과체 계획을 위한 열·빛 환경 평가에 대한 연구)

  • Kim, Chul-Ho;Kim, Kang-Soo
    • KIEAE Journal
    • /
    • v.15 no.6
    • /
    • pp.101-109
    • /
    • 2015
  • Purpose: Glazing and shading devices influence a lot on the thermal and visual environment in office buildings. Solar heat and daylight are contrary concept, therefore proper arrangement of thermal and optical performance is needed when designing a glazing and shading devices. The purpose of this study is to examine the conditions of the glazing and shading devices available for promoting the reduction of cooling loads + lighting loads and the improvement in thermal comfort and visual comfort for the summer season in an office building installed with venetian blind. Method: This study established 12 simulation cases which have different glazings and the positions of venetian blind for evaluating different thermal and optical performance. And by using EnergyPlus v8.1 and Window v7.2 program, we quantitatively analyzed cooling loads + lighting loads, thermal comfort and visual comfort in an office building installed with the glazing and shading devices. Result: Consequently, Case 9(Double Low-E+Exterior Blind) is the best arrangement of solar heat gain and daylight influx, thereby becomes the most excellent case of reducing cooling+lighting loads(46.8%) and simultaneously becomes the enhancement case in thermal comfort. Also, DGI(Daylight glare index) under clear sky conditions in summer was evaluated to be 19.6, and thereby satisfied the recommendation level of allowing visual comfort.

Evaluation Study of a Double Blind Light Pipe Daylighting System Efficiency and an Illumination Energy Reduction (이중 블라인드 광파이프 주광 조명시스템 효율 및 조명에너지 절감량 평가 연구)

  • Kang, Eun-Chul;Yoo, Seong-Yeon;Lee, Euy-Joon
    • Journal of the Korean Solar Energy Society
    • /
    • v.33 no.1
    • /
    • pp.89-95
    • /
    • 2013
  • A DBLP(Double blind light pipe) daylight system can be installed at a building exterior wall or roof to replace artificial light during the day time. This system was consisted of a double blind light collector, a mirror duct type light transformer and a prism light pipe distributor. The double blinds were used to track the sun's altitude and azimuth movements to collect the sunlight throughout the day. The sunlight collected by the light collector was reflected on the first mirror and the second mirror and sent to the light pipe through the light transformer. The transformer was designed to deliver the sunlight into the light pipe efficiently. The light distributor plays a role in diffusing the sunlight coming in through the light collector to be used for indoor lighting. In this paper, a DBLP system has been designed, installed and tested at a KIER daylighting twin test cell. The DBLP daylighting system was applied to the experimental test cell which has an indoor area of 2.0 m wide ${\times}$ 2.4 m height ${\times}$ 3.8 m length. The experiment was conducted from January 30 to February 27, 2012, under clear skies and partially cloudy skies. Data was collected from 10:00 am to 16:00 pm every 2 minute and the average was calculated for every 30 minute of the data collection to obtain the system efficiency. The results indicated that the DBLP system efficiency was evaluated as 11.67%. The DBLP system indoor illumination energy reduction was predicted as 0.822 kWh/day. This could replace 4 sets of a 32W fluorescent lamp operating 6.4 hours per a day.

The Development of the Simple SHGC Calculation Method in Case of a Exterior Venetian Blind Using the Simulation (시뮬레이션을 이용한 외부 베네시안 블라인드의 약식 SHGC 계산법 개발)

  • Eom, Jae-Yong;Lee, Chung-Kook;Jang, Weol-Sang;Choi, Won-Ki
    • Journal of the Korean Solar Energy Society
    • /
    • v.35 no.2
    • /
    • pp.73-83
    • /
    • 2015
  • When it comes to these buildings for business use, cooling load during summertime was reported to have great importance which, as a result, impressively increased interest in Solar Heat Gain Coefficient (SHGC). Such SHGC is considered to be lowered with the help of colors and functions of glass itself, internal shading devices, insulation films and others but basically, these external shading devices for initial blocking that would not allow solar heat to come in from outside the buildings are determined to be most effective. Of many different external shading devices, this thesis conducted an analysis on Exterior Venetian Blind. As for vertical shading devices, previous researches already calculated SHGC conveniently using concepts of sky-opening ratios. However in terms of the Venetian Blind, such correlation is not possibly applied. In light of that, in order to extract a valid correlation, this study first introduced a concept called shape factor, which would use the breadth and a space of a shade, before carrying out the analysis. As a consequence, the concept helped this study to find a very similar correlation. Results of the analysis are summarized as follows. (1) Regarding SHGC depending on the surface reflectance of a shade, an average of 2% error is observed and yet, the figure can always be ignored when it comes to a simple calculation. (2) As for SHGC of each bearing, this study noticed deviations of 4% or less and in the end, it is confirmed that extraction can be achieved with no more than one correlation formula. (3) When only the shape factor and nothing else is used for finding a correlation formula, the formula with a deviation of approximately 5% or less is what one would expect. (4) Since the study observed slight differences in bearings depending on ranges of the shape factors, it needed to extract a weighted value of each bearing, and learned that the smaller the shape factor, the wider the range of a weighted value. The study now suggests that a follow-up research to extract a simple calculation formula by dealing with all these various inclined angles of shade, solar radiation conditions of each region (the ratio of diffuse radiation to direct radiation and others) as well as seasonal features should be carried out.

An Evaluation of Indoor Thermal Environment for Zero-Carbon Green Home according to the Operation Conditions in Summer (제로카본 그린홈의 여름철 운영조건에 따른 실내 열환경 평가)

  • Yu, Jung yeon;Cho, Dong woo;Kim, Kee Han
    • Journal of the Korean Solar Energy Society
    • /
    • v.40 no.2
    • /
    • pp.25-36
    • /
    • 2020
  • The Korean government has a plan to mandate zero-energy buildings in 2020 for public and 2025 for private buildings. In order to design a zero-energy building, insulation and airtightness, which are the most basic elements of passive house technology, are required, and the government has been accomplished this through step-by-step strengthening of related standards. In passive house with high thermal insulation and airtightness performance, the heat introduced into the building through solar radiation can be stored for a long time to keep the inside warm during winter. On the other hand, during summer, heat introduced into the building cannot be easily released to outside, so it is necessary to actively block solar radiation and high temperature outdoor air to prevent an increase of indoor temperature. Therefore, this study aims to derive an appropriate operation condition of passive house to maintain the indoor temperature at an suitable level according to the ventilation methods and solar shading conditions. As a result, under the conditions that the outdoor temperature was 28℃ or less, the ventilation using a heat recovery ventilation system at daytime and natural ventilation at nighttime were selected for the most appropriate operation method. In addition, in the case of solar shading, it was found that blocking solar radiation at daytime using the blind and open the blind at nighttime to ensure natural ventilation were selected for the most appropriate solar shading condition.

Evaluation and improvement of external electric blinds through field application (실증 적용을 통한 외부 전동블라인드의 성능 평가 및 개선 방안)

  • Min-Woo Kang;Hee-Dong Lee;Yang-Ki Oh
    • The Journal of the Acoustical Society of Korea
    • /
    • v.42 no.3
    • /
    • pp.181-188
    • /
    • 2023
  • In a typical living space, windows are directly exposed to the external noise environment. The best way to reduce outside noise is to block it from the outside, not the inside. Exterior blinds for blocking sunlight are commercialized in various ways. However, it has not yet been actively utilized in Korea. In the previous study, an experiment was conducted in an accredited laboratory to verify the sound insulation performance of an external motorized blind manufactured for shading. And it was verified that there is a sound insulation performance of 6 dBA compared to the reduction performance of a general window. In this study, we tried to confirm the reduction performance by applying the sound insulation performance of external electric blinds to windows in actual living spaces. In addition, an improvement plan was sought to increase the effective noise reduction performance. As a result of the measurement, the reduction performance of the external motorized blind itself was insufficient at the level of 1 dBA to 3 dBA. However, additional reduction performance of the 2 dBA level was confirmed by filling the gap between the blind slits.

DEVELOPMENT OF ROBUST LATERAL COLLISION RISK ASSESSMENT METHOD (측후방 충돌 안전 시스템을 위한 횡방향 충돌 위험 평가 지수 개발)

  • Kim, Kyuwon;Kim, Beomjun;Kim, Dongwook;Yi, Kyongsu
    • Journal of Auto-vehicle Safety Association
    • /
    • v.5 no.1
    • /
    • pp.44-49
    • /
    • 2013
  • This paper presents a lateral collision risk index between an ego vehicle and a rear-side vehicle. The lateral collision risk is designed to represent a lateral collision risk and provide the appropriate threshold value of activation of the lateral collision management system such as the Blind Spot Detection(BSD). The lateral collision risk index is designed using the Time to Line Crossing(TLC) and the longitudinal collision index at the predicted TLC. TLC and the longitudinal collision index are calculated with the signals from the exterior sensor such as the radar equipped on the rear-side of a vehicle and a vision sensor which detects the distance and time to the lane departure. For the robust situation assessment, the perception of driving environment determining whether the road is straighten or curved should be determined. The relative motion estimation method has been proposed with the road information via the integrated estimator using the environment sensors and vehicle sensor. A lateral collision risk index was composed with the estimated relative motion considering the relative yaw angle. The performance of the proposed lateral collision risk index is investigated via computer simulations conducted using the vehicle dynamics software CARSIM and Matlab/Simulink.

Improvement of sound insulation performance of windows according to the specifications of the external electric blinds (외부 전동블라인드의 사양에 따른 창호 차음성능 개선 효과)

  • Min-Woo, Kang;Hee-Dong, Lee;Yang-Ki, Oh
    • The Journal of the Acoustical Society of Korea
    • /
    • v.41 no.6
    • /
    • pp.621-628
    • /
    • 2022
  • The most realistic way to reduce noise outside the building, such as road traffic noise and aircraft noise, is to strengthen the sound insulation performance at the sound collecting points such as balconies, windows, and exterior walls of each building. However, in light of the reality that shading devices outside buildings are not yet widely used, there are not many studies on sound insulation performance improvement using external windows and window devices such as louvers and blinds. In particular, external blinds can not only block the inflow of strong sunlight in the morning and evening from the outside of the building, but also target the sound insulation effect that blocks the peak noise that occurs during commuting hours. In this study, a study was conducted to improve sound insulation performance against external noise by using an external electric blind (EEB), which is one of the most efficient window and door external shading devices. Various sound insulation performance tests were conducted while changing the configuration of external electric blinds developed for light blocking purposes. Through this, it was verified that an additional sound insulation performance of 6 dB can be obtained by installing an external electric blind compared to the reduction performance of general windows.

A Critique of The Environmental Green Concept in the view of representative issues for products -Usage, Aesthetics in product design, Manufacturing, and Products' price-

  • Ryu Seung-Ho
    • Archives of design research
    • /
    • v.19 no.3 s.65
    • /
    • pp.105-116
    • /
    • 2006
  • In product manufacturing industries, a recent issue is the green concept. The green concept is a complicated area. If the green concept is for products, its serious issues have to be criticized. Although the importance of the green concept has overflowed, its influences have not been disputed vigorously. So this study is to critic the serious issues of the green concept in aesthetics in product design, manufacturing, and products' prices. The green environment has four representative elements: systems, policies, minds, and technologies, but they are not in the field of design. An element of the green concept, green design is also a sub concept for design, so it should be based on aesthetics. It is green aesthetics. But since green design first appeared, it has never approached by aesthetics because it has mostly had social meanings and expectations. So for green aesthetics, to think about what makes a product, and what can be aesthetic issues among them are important. Products consist of form, structure, material, and technology. Form means different shapes in a structure, but there cannot be any specific directions for a green concept. Structure has two kinds: interior and exterior structure. While interior structure has a technological character, exterior structure is deeply related with aesthetics, but it has also no chance for green concept. Material can be divided as two also: aesthetic and technological. Aesthetics materials mean the colors, opacity, and tactile sense of materials, but they are not aesthetic issues. Technological materials are recycled materials or non-recycled materials. Even if recycled materials are used today, they are close to systems or policies rather than aesthetics. With this result, green aesthetics is a very difficult concept. Second, green products are usually 30% more expensive than general products. But every consumer has his or her own economical conditions, and nobody can coerce consumers into buying expensive green products for green environments. And green products without good quality cannot satisfy consumers. This means that green concept is not accomplished by just manufacturing green products. Third, although a lot of proposals have appeared as green design in exhibitions, most of them are close to craft because they are so hard to be manufactured. Manufacturing is the first consideration for products. These three issues are enough to explain why green concept is complicated in manufacturing products. If they are not solved, the green concept is just a fiction. So if this study proposes a turning point against blind green-oriented atmosphere, it will be meaningful enough.

  • PDF