• Title/Summary/Keyword: Extensively Drug-Resistant Tuberculosis

Search Result 21, Processing Time 0.019 seconds

Insurance risk analysis of drug-resistant tuberculosis (내성결핵의 보험의학적 위험분석)

  • Lee, Sin-Hyung
    • The Journal of the Korean life insurance medical association
    • /
    • v.28 no.1_2
    • /
    • pp.15-18
    • /
    • 2009
  • Background: Recent emergence of drug-resistant tuberculosis such as multidrug-resistant tuberculosis(MDR-TB) or extensively drug-resistant tuberculosis(XDR-TB) has become important health care problems. It has also became grave issues for insurance industries in determining medical risks. We have therefore strived to analyze the comparative mortality rates for drug-resistant tuberculosis through utilization of results from previous articles. Methods: Comparative mortality was calculated from source articles using mortality analysis methods. Results: Mortality ratio of MDR-TB was estimate to 1200%, and excess death rate was 110 per 1,000. Comparative mortality between MDR-TB and XDR-TB by Korean $study^{(1)}$ were 1750, 382, 405, 443, 1025, and 357%, for each 10 months study intervals, respectively. Total mortality ratio was 594% and total excess death rate was 60 per 1,000person. It was determined that the risk of XDR-TB was much greater than MDR-TB. Discussion; Pending the development of a novel anti-tuberculosis drug, it would be prudent to steer clear insuring XDR-TB during underwriting phase due to high medical cost that it creates.

  • PDF

Susceptibility of β-Lactam Antibiotics and Genetic Mutation of Drug-Resistant Mycobacterium tuberculosis Isolates in Korea

  • Park, Sanghee;Jung, Jihee;Kim, Jiyeon;Han, Sang Bong;Ryoo, Sungweon
    • Tuberculosis and Respiratory Diseases
    • /
    • v.85 no.3
    • /
    • pp.256-263
    • /
    • 2022
  • Background: Mycobacterium tuberculosis (Mtb) is resistant to the β-lactam antibiotics due to a non-classical transpeptidase in the cell wall with β-lactamase activity. A recent study showed that meropenem combined with clavulanate, a β-lactamase inhibitor, was effective in multidrug-resistant (MDR) and extensively drug-resistant (XDR) tuberculosis (TB). However, in Korea, clavulanate can only be used as drugs containing amoxicillin. In this study, we investigated the susceptibility and genetic mutations of drug-resistant Mtb isolates to amoxicillin-clavulanate and meropenem-clavulanate to improve the diagnosis and treatment of drug-resistant TB patients. Methods: The minimum inhibitory concentration (MIC) of amoxicillin-clavulanate and meropenem-clavulanate was examined by resazurin microtiter assay. We used 82 MDR and 40 XDR strains isolated in Korea and two reference laboratory strains. Mutations of drug targets blaC, blaI, ldtA, ldtB, dacB2, and crfA were analyzed by polymerase chain reaction and DNA sequencing. Results: The MIC90 values of amoxicillin/clavulanate and meropenem/clavulanate in drug-resistant Mtb isolates were 64/2.5 and 16/2.5 mg/L, respectively. Gene mutations related to amoxicillin/clavulanate and meropenem/clavulanate resistance could not be identified, but T448G mutation was found in the blaC gene related to β-lactam antibiotics' high susceptibility. Conclusion: Our results provide clinical consideration of β-lactams in treating drug-resistant TB and potential molecular markers of amoxicillin-clavulanate and meropenem-clavulanate susceptibility.

Medical Management of Drug-Resistant Tuberculosis

  • Jeon, Doosoo
    • Tuberculosis and Respiratory Diseases
    • /
    • v.78 no.3
    • /
    • pp.168-174
    • /
    • 2015
  • Drug-resistant tuberculosis (TB) is still a major threat worldwide. However, recent scientific advances in diagnostic and therapeutic tools have improved the management of drug-resistant TB. The development of rapid molecular testing methods allows for the early detection of drug resistance and prompt initiation of an appropriate treatment. In addition, there has been growing supportive evidence for shorter treatment regimens in multidrug-resistant TB; and for the first time in over 50 years, new anti-TB drugs have been developed. The World Health Organization has recently revised their guidelines, primarily based on evidence from a meta-analysis of individual patient data (n=9,153) derived from 32 observational studies, and outlined the recommended combination and correct use of available anti-TB drugs. This review summarizes the updated guidelines with a focus on the medical management of drug-resistant TB.

Concise Clinical Review of Hematologic Toxicity of Linezolid in Multidrug-Resistant and Extensively Drug-Resistant Tuberculosis: Role of Mitochondria

  • Oehadian, Amaylia;Santoso, Prayudi;Menzies, Dick;Ruslami, Rovina
    • Tuberculosis and Respiratory Diseases
    • /
    • v.85 no.2
    • /
    • pp.111-121
    • /
    • 2022
  • Multidrug-resistant tuberculosis (MDR-TB) is caused by an organism that is resistant to both rifampicin and isoniazid. Extensively drug-resistant TB, a rare type of MDR-TB, is caused by an organism that is resistant to quinolone and one of group A TB drugs (i.e., linezolid and bedaquiline). In 2018, the World Health Organization revised the groupings of TB medicines and reclassified linezolid as a group A drug for the treatment of MDR-TB. Linezolid is a synthetic antimicrobial agent in the oxazolidinone class. Although linezolid has a good efficacy, it can cause substantial adverse events, especially hematologic toxicity. In both TB infection and linezolid mechanism of action, mitochondrial dysfunction plays an important role. In this concise review, characteristics of linezolid as an anti-TB drug are summarized, including its efficacy, pathogenesis of hematologic toxicity highlighting mitochondrial dysfunction, and the monitoring and management of hematologic toxicity.

Delamanid, Bedaquiline, and Linezolid Minimum Inhibitory Concentration Distributions and Resistance-related Gene Mutations in Multidrug-resistant and Extensively Drug-resistant Tuberculosis in Korea

  • Yang, Jeong Seong;Kim, Kyung Jong;Choi, Hongjo;Lee, Seung Heon
    • Annals of Laboratory Medicine
    • /
    • v.38 no.6
    • /
    • pp.563-568
    • /
    • 2018
  • Background: Delamanid, bedaquiline, and linezolid have recently been approved for the treatment of multidrug- and extensively drug-resistant (MDR and XDR, respectively) tuberculosis (TB). To use these drugs effectively, drug susceptibility tests, including rapid molecular techniques, are required for accurate diagnosis and treatment. Furthermore, mutation analyses are needed to assess the potential for resistance. We evaluated the minimum inhibitory concentrations (MICs) of these three anti-TB drugs for Korean MDR and XDR clinical strains and mutations in genes related to resistance to these drugs. Methods: MICs were determined for delamanid, bedaquiline, and linezolid using a microdilution method. The PCR products of drug resistance-related genes from 420 clinical Mycobacterium tuberculosis strains were sequenced and aligned to those of M. tuberculosis H37Rv. Results: The overall MICs for delamanid, bedaquiline, and linezolid ranged from ${\leq}0.025$ to >1.6 mg/L, ${\leq}0.0312$ to >4 mg/L, and ${\leq}0.125$ to 1 mg/L, respectively. Numerous mutations were found in drug-susceptible and -resistant strains. We did not detect specific mutations associated with resistance to bedaquiline and linezolid. However, the Gly81Ser and Gly81Asp mutations were associated with resistance to delamanid. Conclusions: We determined the MICs of three anti-TB drugs for Korean MDR and XDR strains and identified various mutations in resistance-related genes. Further studies are needed to determine the genetic mechanisms underlying resistance to these drugs.

Trend of Multidrug and Extensively Drug Resistant Tuberculosis in a Tuberculosis Referral Hospital, 2001~2005 (일개 결핵병원에서 다제내성결핵과 광범위내성결핵의 추이, 2001~2005)

  • Jeon, Doosoo;Shin, Dongok;Kang, Hyungseok;Sung, Nackmoon;Kweon, Kyungsoon;Shin, Eun;Kim, Kyungsoon;Lee, Myunghee;Park, Seungkyu
    • Tuberculosis and Respiratory Diseases
    • /
    • v.64 no.3
    • /
    • pp.187-193
    • /
    • 2008
  • Background: Multidrug-resistant tuberculosis (MDR-TB) and extensively drug resistant tuberculosis (XDR-TB) are serious threats to worldwide tuberculosis control, but the national burden and the trends of infectious spread are largely unknown. Methods: We retrospectively reviewed the results of drug sensitivity tests and medical records of patients that were diagnosed with culture-confirmed pulmonary tuberculosis and were admitted to the National Masan Tuberculosis Hospital between 2001 and 2005. Results: From 2001 to 2005, the proportion of MDR-TB among new cases was 9.2%, 13.8%, 16.9%, 23% and 27.0% in 2001, 2002, 2003, 2004 and 2005, respectively, and the proportion of MDR-TB among previously treated cases was 58.5%, 60.2%, 62.7%, 61.7% and 71.3% in 2001, 2002, 2003, 2004 and 2005, respectively. A significant increasing trend could be discerned for MDR-TB among both new and previously treated cases (p<0.001, p=0.002 for trend, respectively). The proportion of XDR-TB among new cases was 0%, 2.3%, 3.1%, 2.5% and 6.3% in 2001, 2002, 2003, 2004 and 2005, respectively, and the proportion of XDR-TB among previously treated cases was 9.1%, 15.7%, 17.3%, 19.9% and 19.1% in 2001, 2002, 2003, 2004 and 2005, respectively. A significant increasing trend could be discerned for XDR-TB among both new and previously treated cases (p=0.005, p<0.001 for trend, respectively). Conclusion: Both MDR-B and XDR-TB were gradually increased among both new and previously treated cases. Integrated national surveillance, including the public and private sectors, will be needed to estimate the exact status of antituberculous drug resistance.

Anti-Tuberculosis Activity of Pediococcus acidilactici Isolated from Young Radish Kimchi against Mycobacterium tuberculosis

  • Yoon, Youjin;Seo, Hoonhee;Kim, Sukyung;Lee, Youngkyoung;Rahim, MD Abdur;Lee, Saebim;Song, Ho-Yeon
    • Journal of Microbiology and Biotechnology
    • /
    • v.31 no.12
    • /
    • pp.1632-1642
    • /
    • 2021
  • Tuberculosis is a highly contagious disease caused by Mycobacterium tuberculosis. It affects about 10 million people each year and is still one of the leading causes of death worldwide. About 2 to 3 billion people (equivalent to 1 in 3 people in the world) are infected with latent tuberculosis. Moreover, as the number of multidrug-resistant, extensively drug-resistant, and totally drug-resistant strains of M. tuberculosis continues to increase, there is an urgent need to develop new anti-tuberculosis drugs that are different from existing drugs to combat antibiotic-resistant M. tuberculosis. Against this background, we aimed to develop new anti-tuberculosis drugs using probiotics. Here, we report the anti-tuberculosis effect of Pediococcus acidilactici PMC202 isolated from young radish kimchi, a traditional Korean fermented food. Under coculture conditions, PMC202 inhibited the growth of M. tuberculosis. In addition, PMC202 inhibited the growth of drug-sensitive and -resistant M. tuberculosis- infected macrophages at a concentration that did not show cytotoxicity and showed a synergistic effect with isoniazid. In a 2-week, repeated oral administration toxicity study using mice, PMC202 did not cause weight change or specific clinical symptoms. Furthermore, the results of 16S rRNA-based metagenomics analysis confirmed that dysbiosis was not induced in bronchoalveolar lavage fluid after oral administration of PMC202. The anti-tuberculosis effect of PMC202 was found to be related to the reduction of nitric oxide. Our findings indicate that PMC202 could be used as an anti-tuberculosis drug candidate with the potential to replace current chemical-based drugs. However, more extensive toxicity, mechanism of action, and animal efficacy studies with clinical trials are needed.

The Recent Status of Multidrug- and Extensively Drug-Resistant Tuberculosis in Korea (국내 다제내성 및 광범위내성결핵의 최근 현황)

  • Kim, Sun-Young;Kim, Hee-Jin;Kim, Chang-Ki;Yoon, Hye-Ryung;Bae, Hye-Gyung;Lee, Sun-Hwa;Sung, Nack-Moon;Kim, Dae-Yeon;Lee, Gang-Young;Cho, Young-Soo;Lee, Sang-Do;Kim, Woo-Sung;Kim, Dong-Soon;Shim, Tae-Sun
    • Tuberculosis and Respiratory Diseases
    • /
    • v.68 no.3
    • /
    • pp.146-154
    • /
    • 2010
  • Background: The increasing incidence of multidrug-resistant tuberculosis (MDR-TB) and extensively drug-resistant tuberculosis (XDR-TB) has become a serious worldwide problem. However, there is insufficient data regarding the current status of MDR-TB and XDR-TB in Korea. This study examined the recent status of MDR- and XDR-TB using the data from 7 laboratories, in which almost all drug susceptibility tests (DST) for Mycobacterium tuberculosis were performed. Methods: The patients' identification data and DST results were collected from all 7 laboratories from 2001 to 2006 and the number of patients with MDR-TB and XDR-TB were calculated. Results: The number of DSTs was 140,638 for 6 years with an increasing incidence each year (p<0.001). The number of DST with MDR results was 18,510 and personal identifying information was obtained in 16,640 (89.9%) tests. The number of MDR-TB patients from 2001 to 2006 was 2,329, 2,496, 2,374, 2,300, 2,354, and 2,178, respectively, when counting the duplications in a year as one patient. The number of MDR-TB patients when counting the duplications in 6 years as one patient was 2,281, 1,977, 1,620, 1,446, 1,512, and 1,373, respectively. When the same method was adopted, the number of XDR-TB patients was 191, 238, 282, 260, 272, and 264, respectively, and 189, 150, 130, 90, 122, and 110 patients, respectively. Conclusion: Despite the national efforts to control TB, there are still a large number of MDR- and XDR-TB patients in Korea.

Anti-Mycobacterial Activity of Tamoxifen Against Drug-Resistant and Intra-Macrophage Mycobacterium tuberculosis

  • Jang, Woong Sik;Kim, Sukyung;Podder, Biswajit;Jyoti, Md. Anirban;Nam, Kung-Woo;Lee, Byung-Eui;Song, Ho-Yeon
    • Journal of Microbiology and Biotechnology
    • /
    • v.25 no.6
    • /
    • pp.946-950
    • /
    • 2015
  • Recently, it has become a struggle to treat tuberculosis with the current commercial antituberculosis drugs because of the increasing emergence of multidrug-resistant (MDR) tuberculosis and extensively drug-resistant (XDR) tuberculosis. We evaluated here the antimycobacterial activity of tamoxifen, known as a synthetic anti-estrogen, against eight drugsensitive or resistant strains of Mycobacterium tuberculosis (TB), and the active intracellular killing of tamoxifen on TB in macrophages. The results showed that tamoxifen had antituberculosis activity against drug-sensitive strains (MIC, 3.125-6.25 µg/ml) as well as drugresistant strains (MIC, 6.25 to 12.5 µg/ml). In addition, tamoxifen profoundly decreased the number of intracellular TB in macrophages in a dose-dependent manner.

Outcomes and Use of Therapeutic Drug Monitoring in Multidrug-Resistant Tuberculosis Patients Treated in Virginia, 2009-2014

  • Heysell, Scott K.;Moore, Jane L.;Peloquin, Charles A.;Ashkin, David;Houpt, Eric R.
    • Tuberculosis and Respiratory Diseases
    • /
    • v.78 no.2
    • /
    • pp.78-84
    • /
    • 2015
  • Background: Reports of therapeutic drug monitoring (TDM) for second-line medications to treat multidrug-resistant tuberculosis (MDR-TB) remain limited. Methods: A retrospective cohort from the Virginia state tuberculosis (TB) registry, 2009-2014, was analyzed for TDM usage in MDR-TB. Drug concentrations, measured at time of estimated peak ($C_{max}$), were compared to expected ranges. Results: Of 10 patients with MDR-TB, 8 (80%) had TDM for at least one drug (maximum 6 drugs). Second-line drugs tested were cycloserine in seven patients (mean $C_{2hr}$, $16.6{\pm}10.2{\mu}g/mL$; 4 [57%] below expected range); moxifloxacin in five (mean $C_{2hr}$, $3.2{\pm}1.5{\mu}g/mL$; 1 [20%] below); capreomycin in five (mean $C_{2hr}$, $21.5{\pm}14.0{\mu}g/mL$; 3 [60%] below); para-aminosalicylic acid in five (mean $C_{6hr}$, $65.0{\pm}29.1{\mu}g/mL$; all within or above); linezolid in three (mean $C_{2hr}$, $11.4{\pm}4.1{\mu}g/mL$, 1 [33%] below); amikacin in two (mean $C_{2hr}$, $35.3{\pm}3.7{\mu}g/mL$; 1 [50%] below); ethionamide in one ($C_{2hr}$, $1.49{\mu}g/mL$, within expected). Two patients died: a 38-year-old woman with human immunodeficiency virus/acquired immune deficiency syndrome and TB meningitis without TDM, and a 76-year-old man with fluoroquinolone-resistant (pre-extensively drug-resistant) pulmonary TB and low linezolid and capreomycin concentrations. Conclusion: Individual pharmacokinetic variability was common. A more standardized approach to TDM for MDR-TB may limit over-testing and maximize therapeutic gain.