Browse > Article
http://dx.doi.org/10.4014/jmb.2107.07044

Anti-Tuberculosis Activity of Pediococcus acidilactici Isolated from Young Radish Kimchi against Mycobacterium tuberculosis  

Yoon, Youjin (Department of Microbiology and Immunology, School of Medicine, Soonchunhyang University)
Seo, Hoonhee (Probiotics Microbiome Convergence Center, Soonchunhyang University)
Kim, Sukyung (Probiotics Microbiome Convergence Center, Soonchunhyang University)
Lee, Youngkyoung (Department of Microbiology and Immunology, School of Medicine, Soonchunhyang University)
Rahim, MD Abdur (Department of Microbiology and Immunology, School of Medicine, Soonchunhyang University)
Lee, Saebim (Probiotics Microbiome Convergence Center, Soonchunhyang University)
Song, Ho-Yeon (Department of Microbiology and Immunology, School of Medicine, Soonchunhyang University)
Publication Information
Journal of Microbiology and Biotechnology / v.31, no.12, 2021 , pp. 1632-1642 More about this Journal
Abstract
Tuberculosis is a highly contagious disease caused by Mycobacterium tuberculosis. It affects about 10 million people each year and is still one of the leading causes of death worldwide. About 2 to 3 billion people (equivalent to 1 in 3 people in the world) are infected with latent tuberculosis. Moreover, as the number of multidrug-resistant, extensively drug-resistant, and totally drug-resistant strains of M. tuberculosis continues to increase, there is an urgent need to develop new anti-tuberculosis drugs that are different from existing drugs to combat antibiotic-resistant M. tuberculosis. Against this background, we aimed to develop new anti-tuberculosis drugs using probiotics. Here, we report the anti-tuberculosis effect of Pediococcus acidilactici PMC202 isolated from young radish kimchi, a traditional Korean fermented food. Under coculture conditions, PMC202 inhibited the growth of M. tuberculosis. In addition, PMC202 inhibited the growth of drug-sensitive and -resistant M. tuberculosis- infected macrophages at a concentration that did not show cytotoxicity and showed a synergistic effect with isoniazid. In a 2-week, repeated oral administration toxicity study using mice, PMC202 did not cause weight change or specific clinical symptoms. Furthermore, the results of 16S rRNA-based metagenomics analysis confirmed that dysbiosis was not induced in bronchoalveolar lavage fluid after oral administration of PMC202. The anti-tuberculosis effect of PMC202 was found to be related to the reduction of nitric oxide. Our findings indicate that PMC202 could be used as an anti-tuberculosis drug candidate with the potential to replace current chemical-based drugs. However, more extensive toxicity, mechanism of action, and animal efficacy studies with clinical trials are needed.
Keywords
Mycobacterium tuberculosis; Pediococcus acidilactici; probiotics; anti-tuberculosis effect; microbiome;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Chiang CY, Van Weezenbeek C, Mori T, Enarson DA. 2013. Challenges to the global control of tuberculosis. Respirology 18: 596-604.   DOI
2 Brust JCM, Shah NS, Mlisana K, Moodley P, Allana S, Campbell A, et al. 2018. Improved survival and cure rates with concurrent treatment for multidrug-resistant tuberculosis-human immunodeficiency virus coinfection in South Africa. Clin. Infect. Dis. 66: 1246-1253.   DOI
3 Nomoto K. 2005. Prevention of infections by probiotics. J. Biosci. Bioeng. 100: 583-592.   DOI
4 Koch A, Mizrahi V. 2018. Mycobacterium tuberculosis. Trends Microbiol. 26: 555-556.   DOI
5 Gut AM, Vasiljevic T, Yeager T, Donkor ON. 2018. Salmonella infection - prevention and treatment by antibiotics and probiotic yeasts: a review. Microbiology (Reading) 164: 1327-1344.   DOI
6 Shenoy A, Gottlieb A. 2019. Probiotics for oral and vulvovaginal candidiasis: a review. Dermatol. Ther. 32: e12970.   DOI
7 Sihra N, Goodman A, Zakri R, Sahai A, Malde S. 2018. Nonantibiotic prevention and management of recurrent urinary tract infection. Nat. Rev. Urol. 15: 750-776.   DOI
8 Mills JP, Rao K, Young VB. 2018. Probiotics for prevention of Clostridium difficile infection. Curr. Opin. Gastroenterol. 34: 3-10.   DOI
9 Wong SS, Quan Toh Z, Dunne EM, Mulholland EK, Tang ML, Robins-Browne RM, et al. 2013. Inhibition of Streptococcus pneumoniae adherence to human epithelial cells in vitro by the probiotic Lactobacillus rhamnosus GG. BMC Res. Notes 6: 135.   DOI
10 Zerin T, Lee M, Jang WS, Nam KW, Song HY. 2015. Ursolic acid reduces Mycobacterium tuberculosis-induced nitric oxide release in human alveolar A549 cells. Mol. Cells 38: 610-615.   DOI
11 Lange K, Buerger M, Stallmach A, Bruns T. 2016. Effects of antibiotics on gut microbiota. Dig. Dis. 34: 260-268.   DOI
12 Redman MG, Ward EJ, Phillips RS. 2014. The efficacy and safety of probiotics in people with cancer: a systematic review. Ann. Oncol. 25: 1919-1929.   DOI
13 Sorokulova IB, Kirik DL, Pinchuk II. 1997. Probiotics against Campylobacter pathogens. J. Travel Med. 4: 167-170.   DOI
14 Pamer EG. 2016. Resurrecting the intestinal microbiota to combat antibiotic-resistant pathogens. Science 352: 535-538.   DOI
15 Forget EJ, Menzies D. 2006. Adverse reactions to first-line antituberculosis drugs. Expert Opin. Drug Saf. 5: 231-249.
16 Prasad R, Singh A, Gupta N. 2019. Adverse drug reactions in tuberculosis and management. Indian J. Tuberc. 66: 520-532.   DOI
17 Deen B, Diez-Gonzalez F. 2019. Assessment of Pediococcus acidilactici ATCC 8042 as potential Salmonella surrogate for thermal treatments of toasted oats cereal and peanut butter. Food Microbiol. 83: 187-192.   DOI
18 Bansal P, Kumar R, Singh J, Dhanda S. 2019. Next generation sequencing, biochemical characterization, metabolic pathway analysis of novel probiotic Pediococcus acidilactici NCDC 252 and it's evolutionary relationship with other lactic acid bacteria. Mol. Biol. Rep. 46: 5883-5895.   DOI
19 Romanowski K, Balshaw RF, Benedetti A, Campbell JR, Menzies D, Ahmad Khan F, et al. 2019. Predicting tuberculosis relapse in patients treated with the standard 6-month regimen: an individual patient data meta-analysis. Thorax 74: 291-297.   DOI
20 Lange C, Dheda K, Chesov D, Mandalakas AM, Udwadia Z, Horsburgh CR, Jr. 2019. Management of drug-resistant tuberculosis. Lancet 394: 953-966.   DOI
21 Iizumi T, Battaglia T, Ruiz V, Perez Perez GI. 2017. Gut microbiome and antibiotics. Arch. Med. Res. 48: 727-734.   DOI
22 Khawbung JL, Nath D, Chakraborty S. 2021. Drug resistant Tuberculosis: a review. Comp. Immunol. Microbiol. Infect. Dis. 74: 101574.   DOI
23 Manley KJ, Fraenkel MB, Mayall BC, Power DA. 2007. Probiotic treatment of vancomycin-resistant enterococci: a randomised controlled trial. Med. J. Aust. 186: 454-457.   DOI
24 Karska-Wysocki B, Bazo M, Smoragiewicz W. 2010. Antibacterial activity of Lactobacillus acidophilus and Lactobacillus casei against methicillin-resistant Staphylococcus aureus (MRSA). Microbiol. Res. 165: 674-686.   DOI
25 Chen CC, Lai CC, Huang HL, Huang WY, Toh HS, Weng TC, et al. 2019. Antimicrobial activity of Lactobacillus species against carbapenem-resistant enterobacteriaceae. Front. Microbiol. 10: 789.   DOI
26 Reikvam DH, Meyer-Myklestad MH, Troseid M, Stiksrud B. 2020. Probiotics to manage inflammation in HIV infection. Curr. Opin. Infect. Dis. 33: 34-43.   DOI
27 Hong BY, Maulen NP, Adami AJ, Granados H, Balcells ME, Cervantes J. 2016. Microbiome changes during tuberculosis and antituberculous therapy. Clin. Microbiol. Rev. 29: 915-926.   DOI
28 Kim S, Seo H, Mahmud HA, Islam MI, Kim YS, Lyu J, et al. 2017. In vitro effect of DFC-2 on mycolic acid biosynthesis in Mycobacterium tuberculosis. J. Microbiol. Biotechnol. 27: 1932-1941.   DOI
29 Van Hoecke L, Job ER, Saelens X, Roose K. 2017. Bronchoalveolar lavage of murine lungs to analyze inflammatory cell infiltration. J. Vis. Exp. 4: 55398.
30 Eslami M, Bahar A, Keikha M, Karbalaei M, Kobyliak NM, Yousefi B. 2020. Probiotics function and modulation of the immune system in allergic diseases. Allergol. Immunopathol. (Madr). 48: 771-788.   DOI
31 Nagasaki A, Takahashi H, Iinuma M, Uchiyama T, Watanabe S, Koide T, et al. 2010. Ulcerative colitis with multidrug-resistant Pseudomonas aeruginosa infection successfully treated with bifidobacterium. Digestion 81: 204-205.   DOI
32 Nawrocki EP, Burge SW, Bateman A, Daub J, Eberhardt RY, Eddy SR, et al. 2015. Rfam 12.0: updates to the RNA families database. Nucleic Acids Res. 43: D130-D137.   DOI
33 Orgeur M, Brosch R. 2018. Evolution of virulence in the Mycobacterium tuberculosis complex. Curr. Opin. Microbiol. 41: 68-75.   DOI
34 Tarasuntisuk S, Palaga T, Kageyama H, Waditee-Sirisattha R. 2019. Mycosporine-2-glycine exerts anti-inflammatory and antioxidant effects in lipopolysaccharide (LPS)-stimulated RAW 264.7 macrophages. Arch. Biochem. Biophys. 662: 33-39.   DOI
35 Manna S, Chowdhury T, Chakraborty R, Mandal SM. 2021. Probiotics-derived peptides and their immunomodulatory molecules can play a preventive role against viral diseases including COVID-19. Probiotics Antimicrb. Proteins 13: 611-623.   DOI
36 Reid G. 2016. Probiotics: definition, scope and mechanisms of action. Best Pract. Res. Clin. Gastroenterol. 30: 17-25.   DOI
37 Maldonado Galdeano C, Cazorla SI, Lemme Dumit JM, Velez E, Perdigon G. 2019. Beneficial effects of probiotic consumption on the immune system. Ann. Nutr. Metab. 74: 115-124.   DOI
38 Goderska K, Agudo Pena S, Alarcon T. 2018. Helicobacter pylori treatment: antibiotics or probiotics. Appl. Microbiol. Biotechnol. 102: 1-7.   DOI
39 Hyatt D, Chen GL, Locascio PF, Land ML, Larimer FW, Hauser LJ. 2010. Prodigal: prokaryotic gene recognition and translation initiation site identification. BMC Bioinformatics 11: 119.   DOI
40 Lowe TM, Eddy SR. 1997. tRNAscan-SE: A program for improved detection of transfer RNA genes in genomic sequence. Nucleic Acids Res. 25: 955-964.   DOI
41 Yoon SH, Ha SM, Lim J, Kwon S, Chun J. 2017. A large-scale evaluation of algorithms to calculate average nucleotide identity. Antonie Van Leeuwenhoek 110: 1281-1286.   DOI
42 Nguyen L. 2016. Antibiotic resistance mechanisms in M. tuberculosis: an update. Arch. Toxicol. 90: 1585-1604.   DOI
43 Sharma D, Sharma S, Sharma J. 2020. Potential strategies for the management of drug-resistant tuberculosis. J. Glob. Antimicrob. Resist. 22: 210-214.   DOI
44 Liu Y, Wang J, Wu C. 2021. Microbiota and Tuberculosis: a potential role of probiotics, and postbiotics. Front. Nutr. 8: 626254.   DOI
45 Aubin GG, Bemer P, Kambarev S, Patel NB, Lemenand O, Caillon J, et al. 2016. Propionibacteriumnamnetense sp. nov., isolated from a human bone infection. Int. J. Syst. Evol. Microbiol. 66: 3393-3399.   DOI
46 Pieters J. 2008. Mycobacterium tuberculosis and the macrophage: maintaining a balance. Cell Host Microbe. 3: 399-407.   DOI
47 Mincheol Kim, JS Chun. 2014. Chapter 4 - 16S rRNA Gene-Based Identification of Bacteria and Archaea using the EzTaxon server. Methods Microbiol. 41: 61-74.   DOI
48 O'Toole RF, Gautam SS. 2018. The host microbiome and impact of tuberculosis chemotherapy. Tuberculosis (Edinb) 113: 26-29.   DOI
49 Chong VH, Lim KS. 2009. Gastrointestinal tuberculosis. Singapore Med. J. 50: 638-645; quiz 646.
50 Pan FG, Zhao YY, Zhu S, Sun CJ, Lei LC, Feng X, et al. 2012. Different transcriptional profiles of RAW264.7 infected with Mycobacterium tuberculosis H37Rv and BCG identified via deep sequencing. PLoS One 7: e51988.   DOI
51 Suprapti B, Suharjono S, Raising R, Yulistiani Y, Izzah Z, Nilamsari WP, et al. 2018. Effects of probiotics and Vitamin B supplementation on IFN-gamma and IL-12 levels during intensive phase treatment of tuberculosis. Indones J. Pharm. 29: 80-85.   DOI
52 Bogdan C. 2001. Nitric oxide and the immune response. Nat. Immunol. 2: 907-916.   DOI
53 Chakravortty D, Hensel M. 2003. Inducible nitric oxide synthase and control of intracellular bacterial pathogens. Microbes Infect. 5: 621-627.   DOI