Browse > Article
http://dx.doi.org/10.4014/jmb.1412.12023

Anti-Mycobacterial Activity of Tamoxifen Against Drug-Resistant and Intra-Macrophage Mycobacterium tuberculosis  

Jang, Woong Sik (Regional Innovation Center, Soonchunhyang University)
Kim, Sukyung (Department of Microbiology and Immunology, School of Medicine, Soonchunhyang University)
Podder, Biswajit (Department of Microbiology and Immunology, School of Medicine, Soonchunhyang University)
Jyoti, Md. Anirban (Department of Microbiology and Immunology, School of Medicine, Soonchunhyang University)
Nam, Kung-Woo (Departments of Life Science and Biotechnology)
Lee, Byung-Eui (Chemistry, Soonchunhyang University)
Song, Ho-Yeon (Regional Innovation Center, Soonchunhyang University)
Publication Information
Journal of Microbiology and Biotechnology / v.25, no.6, 2015 , pp. 946-950 More about this Journal
Abstract
Recently, it has become a struggle to treat tuberculosis with the current commercial antituberculosis drugs because of the increasing emergence of multidrug-resistant (MDR) tuberculosis and extensively drug-resistant (XDR) tuberculosis. We evaluated here the antimycobacterial activity of tamoxifen, known as a synthetic anti-estrogen, against eight drugsensitive or resistant strains of Mycobacterium tuberculosis (TB), and the active intracellular killing of tamoxifen on TB in macrophages. The results showed that tamoxifen had antituberculosis activity against drug-sensitive strains (MIC, 3.125-6.25 µg/ml) as well as drugresistant strains (MIC, 6.25 to 12.5 µg/ml). In addition, tamoxifen profoundly decreased the number of intracellular TB in macrophages in a dose-dependent manner.
Keywords
Mycobacterium tuberculosis; tamoxifen; intracellular killing; MDR; XDR;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Singh R, Hussain S, Verma R, Sharma P. 2013. Antimycobacterial screening of five Indian medicinal plants and partial purification of active extracts of Cassia sophera and Urtica dioica. Asian Pac. J. Trop. Med. 6: 366-371.   DOI   ScienceOn
2 Naik SK, Mohanty S, Padhi A, Pati R, Sonawane A. 2014. Evaluation of antibacterial and cytotoxic activity of Artemisia nilagirica and Murraya koenigii leaf extracts against mycobacteria and macrophages. BMC Complement. Altern. Med. 14: 87.   DOI   ScienceOn
3 Palomino JC, Martin A, Camacho M, Guerra H, Swings J, Portaels F. 2002. Resazurin microtiter assay plate: simple and inexpensive method for detection of drug resistance in Mycobacterium tuberculosis. Antimicrob. Agents Chemother. 46: 2720-2722.   DOI
4 Pecora ND, Fulton SA, Reba SM, Drage MG, Simmons DP, Urankar-Nagy NJ, et al. 2009. Mycobacterium bovis BCG decreases MHC-II expression in vivo on murine lung macrophages and dendritic cells during aerosol infection. Cell Immunol. 254: 94-104.   DOI   ScienceOn
5 Vandal OH, Nathan CF, Ehrt S. 2009. Acid resistance in Mycobacterium tuberculosis. J. Bacteriol. 191: 4714-4721.   DOI   ScienceOn
6 Vandal OH, Pierini LM, Schnappinger D, Nathan CF, Ehrt S. 2008. A membrane protein preserves intrabacterial pH in intraphagosomal Mycobacterium tuberculosis. Nat. Med. 14: 849-854.   DOI   ScienceOn
7 Jayachandran R, Scherr N, Pieters J. 2012. Elimination of intracellularly residing Mycobacterium tuberculosis through targeting of host and bacterial signaling mechanisms. Expert Rev. Anti Infect. Ther. 10: 1007-1022.   DOI   ScienceOn
8 Christophe T, Jackson M, Jeon HK, Fenistein D, ContrerasDominguez M, Kim J, et al. 2009. High content screening identifies decaprenyl-phosphoribose 2’ epimerase as a target for intracellular antimycobacterial inhibitors. PLoS Pathog. 5: e1000645.   DOI   ScienceOn
9 Dolan K, Montgomery S, Buchheit B, Didone L, Wellington M, Krysan DJ. 2009. Antifungal activity of tamoxifen: in vitro and in vivo activities and mechanistic characterization. Antimicrob. Agents Chemother. 53: 3337-3346.   DOI
10 El Arbi M, Théolier J, Pigeon P, Jellali K, Trigui F, Top S, et al. 2014. Antibacterial properties and mode of action of new triaryl butene citrate compounds. Eur. J. Med. Chem. 76: 408-413.   DOI   ScienceOn
11 Miguel DC, Zauli-Nascimento RC, Yokoyama-Yasunaka JK, Katz S, Barbieri CL, Uliana SR. 2009. Tamoxifen as a potential antileishmanial agent: efficacy in the treatment of Leishmania braziliensis and Leishmania chagasi infections. J. Antimicrob. Chemother. 63: 365-368.   DOI   ScienceOn
12 Kaufmann SHE. 2001. How can immunology contribute to the control of tuberculosis? Nat. Rev. Immunol. 1: 20-30.   DOI   ScienceOn
13 Luxo C, Jurado AS, Madeira VM, Silva MT. 2003. Tamoxifen induces ultrastructural alterations in membranes of Bacillus stearothermophilus. Toxicol. Vitol. 17: 623-628.   DOI   ScienceOn
14 Luo X, Pires D, Ainsa JA, Gracia B, Mulhovo S, Duarte A, et al. 2011. Antimycobacterial evaluation and preliminary phytochemical investigation of selected medicinal plants traditionally used in Mozambique. J. Ethnopharmacol. 137: 114-120.   DOI   ScienceOn
15 Chen FC, Liao YC, Huang JM, Lin CH, Chen YY, Dou HY, Hsiung CA. 2014. Pros and cons of the tuberculosis drugome approach - an empirical analysis. PLoS One 9: e100829.   DOI   ScienceOn
16 Atroshi F, Rizzo A, Westermarck T, Ali-Vehmas T. 1998. Effects of tamoxifen, melatonin, coenzyme Q10, and L-carnitine supplementation on bacterial growth in the presence of mycotoxins. Pharmacol. Res. 38: 289-295.   DOI   ScienceOn
17 Caleffi-Ferracioli KR, Maltempe FG, Siqueira VL, Cardoso RF. 2013. Fast detection of drug interaction in Mycobacterium tuberculosis by a checkerboard resazurin method. Tuberculosis (Edinb.) 93: 660-663.   DOI   ScienceOn
18 Changsen C, Franzblau SG, Palittapongarnpim P. 2003. Improved green fluorescent protein reporter gene-based microplate screening for antituberculosis compounds by utilizing an acetamidase promoter. Antimicrob. Agents Chemother. 47: 3682-3687.   DOI