• Title/Summary/Keyword: Expression Vector

Search Result 1,535, Processing Time 0.027 seconds

Iron fortification of grains by introducing a recombinant gene of ferritin with seed promoters in rice (종자 특이 프로모터와 대두 Ferritin 유전자에 의한 벼 종실의 철분강화)

  • Cho, Yong-Gu;Kim, Hyung-Keun;Choi, Jang-Sun;Jung, Yu-Jin;Kang, Kwon-Kyoo
    • Journal of Plant Biotechnology
    • /
    • v.36 no.1
    • /
    • pp.87-95
    • /
    • 2009
  • The recombinant DNAs, pGBF, pGTF, and pZ4F, using soybean ferritin gene have constructed with the promoters derived from seed proteins, glutelin, globulin, and zein. The recombinant ferritin genes were transformed into rice plant by Agrobacterium-mediated transformation. Iron contents and agronomic traits have been evaluated in the transgenic progenies. The embryogenic calli survived from second selection medium were regenerated at the rates of 19.2% with pGBF, 15.0% with pGTF, and 18.4% with pZ4F in Donganbyeo and 6.7% with pGBF, 11.7% with pGTF, and 3.4% with pZ4F in Hwashinbyeo. The introduction of ferritin gene in putative transgenic rice plants was confirmed by PCR and Southern blot analysis and also the expression of ferritin gene was identified by Northern blot and Western blot analysis. The iron accumulation in transgenic rice grains of the transgenic rice plant, T1-2, with zein promoter and ferritin gene contained 171.4 ppm showing 6.4 times higher than 26.7 ppm of Hwashinbyeo seed as wild type rice, but the transgenic plants with globulin and glutelin showed a bit higher iron contents with a range from 2.1 to 3.0 times compare to wild type grain. The growth responses of transgenic plants showed the large variances in plant height and number of tillers. However, there were some transgenic plants having similar phenotype to wild type plants. In the T1 generation of transgenic plants, plant height, culm length, panicle length, and number of tillers were similar to those of wild type plants, but ripened grain ratio ranged from 53.3% to 82.2% with relatively high variation. The transgenic rice plants would be useful for developing rice varieties with high iron content in rice grains.

Growth Effect of Oncorhychus masou by Recombinant Myostatin Prodomain Proteins Derived from Fish (어류 유래 마이오스타틴 프로도메인 단백질에 의한 시마연어(Oncorhychus masou) 성장효과)

  • Kim, Jeong-Hwan;Lee, Sang-Beum;Cho, Mi-Jin;Ahn, Ji-Young;Lee, Suk-Keun;Hong, Sung-Youl;Seong, Ki-Baik;Jin, Hyung-Joo
    • Journal of Life Science
    • /
    • v.21 no.8
    • /
    • pp.1149-1155
    • /
    • 2011
  • Myostatin (MSTN) belongs to the transforming growth factor-${\beta}$ superfamily or growth and differentiation factor 8 (GDF-8), and functions as a negative regulator of skeletal muscle development and growth. Previous studies in mammals have suggested that myostatin knock-out increased muscle mass and decreased fat content compared to those of the wide type. Recently, several studies on myostatin have beenconducted on the block myostatin signal pathway with myostatin antagonists and the MSTN regulation with RNAi to control myostatin function. This study was performed to analyze growth and muscle alteration of Oncorhychus masou by treatment with recombinant myostatin prodomains derived from fish. We designed myostatin prodomains derived from P. olivaceus (pMALc2x-poMSTNpro) and S. schlegeli (pMALc2x-sMSTNpro) in a pMALc2x expression vector, and then purified the recombinant proteins using affinity chromatography. The purified recombinant proteins were treated in O. masou through an immersion method. Recombinant protein treated groups did not show a significant difference in weight, protein, or lipid composition compared to the control. However, there was a difference in the average number and area for histological analyses in the muscle fiber. At twelve and twenty-two weeks from the initial treatment, there were differences in averagefiber number and area between the 0.05 mg/l treated-group and the control, but the numbers were similar to those of the control during the same time period. At twelve weeks, however, 0.2 mg/l treated-group had an increase in average fiber number and decrease in average fiber area compared to the control. At twenty-two weeks, the pMALc2x-sMSTNpro 0.2 mg/l treated-group was induced and showed a decrease in average fiber number and increase in average fiber area. The results between twelve and twenty-two weeks showed that the fiber numbers had decreased, whereas average fiberarea had increased due to sMSTNpro. It is understood that the sMSTNpro induced only hyperplasia at twelve weeks, after which it induced hypertrophy. Recombinant myostatin prodomains derived from fish may induce hyperplasia and hypertrophy in O. masou depending upon the time that has elapsed.

Production and Evaluation of Immunoreactivity of Poly Lysine-Tagged Single Chain Fragment Variable (ScFv) Lym-1 Antibody for Direct Conjugation to Fluorescence Dye (형광 물질 직접 표지를 위한 Poly Lysine 도입 Lym-1 단일사슬 항체의 제조 및 면역반응성 평가)

  • Jung, Jae-Ho;Choi, Tae-Hyun;Woo, Kwang-Sun;Chung, Wee-Sup;Kang, Joo-Hyun;Jeong, Su-Young;Choi, Chang-Woon;Lim, Sang-Moo;Cheon, Gi-Jeong
    • Nuclear Medicine and Molecular Imaging
    • /
    • v.43 no.5
    • /
    • pp.487-494
    • /
    • 2009
  • Purpose: Small size of recombinant scFv antibody has many advantages such as rapid blood clearances and improved targeting antibodies to tumor region. On the other hand owing to small size, number of amino group is insufficient in conjugation with chelator and fluorescence labeling. This study is to introduce poly lysine tag to the C-terminal end of scFv lym-1 sequence for fluorescence chelator conjugation. Materials and Methods: Poly lysine scFv lym-1 gene, cloned into pET-22b (+) vector, was expressed in E. coli BL21 (DE3) strain. Antibody purification was performed with Ni-NTA column and then size exclusion column chromatography. Expression and purification levels of poly lysine tagged scFv lym-1 antibody were confirmed by western blot analysis. I-124, I-125, I-131 and Tc-99m were used for radiolabeling of purified poly lysine scFv lym-1. Flow cytometry analysis of FIT( conjugated poly lysine scFv lym-1 was performed for confirmation of immunoreactivity of human Burkitt's lymphoma cells. Results: Poly lysine scFv lym-1 antibody was purified through two steps and identified as molecular weight of 48 KDa. Radiolabeling yields of I-124, I-125, I-131 and Tc-99m into poly lysine scFv lym-1 were >99%, >99%, >95% and >99%, respectively. Flow cytometry analysis of poly lysine scFv and scFv lym-1 was showed similar immunoreactivity to human Burkitt's lymphoma cells. Conclusion: Poly lysine tag was useful for the sufficient number of amino groups to scFv lym-1 antibody for chelator conjugation with minimizing loss of immunoreactivity.

Characterization of Exolytic GH50A β-Agarase and GH117A α-NABH Involved in Agarose Saccharification of Cellvibrio sp. KY-GH-1 and Possible Application to Mass Production of NA2 and L-AHG (Cellvibrio sp. KY-GH-1의 아가로오스 당화 관련 엑소형 GH50A β-아가레이즈와 GH117A α-NABH의 특성 및 NA2와 L-AHG 양산에의 적용 가능성)

  • Jang, Won Young;Lee, Hee Kyoung;Kim, Young Ho
    • Journal of Life Science
    • /
    • v.31 no.3
    • /
    • pp.356-365
    • /
    • 2021
  • Recently, we sequenced the entire genome of a freshwater agar-degrading bacterium Cellvibrio sp. KY-GH-1 (KCTC13629BP) to explore genetic information encoding agarases that hydrolyze agarose into monomers 3,6-anhydro-L-galactose (L-AHG) and D-galactose. The KY-GH-1 strain appeared to possess nine β-agarase genes and two α-neoagarobiose hydrolase (α-NABH) genes in a 77-kb agarase gene cluster. Based on these genetic information, the KY-GH-1 strain-caused agarose degradation into L-AHG and D-galactose was predicted to be initiated by both endolytic GH16 and GH86 β-agarases to generate NAOS (NA4/NA6/NA8), and further processed by exolytic GH50 β-agarases to generate NA2, and then terminated by GH117 α-NABHs which degrade NA2 into L-AHG and D-galactose. More recently, by employing E. coli expression system with pET-30a vector we obtained three recombinant His-tagged GH50 family β-agarases (GH50A, GH50B, and GH50C) derived from Cellvibrio sp. KY-GH-1 to compare their enzymatic properties. GH50A β-agarase turned out to have the highest exolytic β-agarase activity among the three GH50 isozymes, catalyzing efficient NA2 production from the substrate (agarose, NAOS or AOS). Additionally, we determined that GH117A α-NABH, but not GH117B α-NABH, could potently degrade NA2 into L-AHG and D-galactose. Sequentially, we examined the enzymatic characteristics of GH50A β-agarase and GH117A α-NABH, and assessed their efficiency for NA2 production from agarose and for production of L-AHG and D-galactose from NA2, respectively. In this review, we describe the benefits of recombinant GH50A β-agarase and GH117A α-NABH originated from Cellvibrio sp. KY-GH-1, which may be useful for the enzymatic hydrolysis of agarose for mass production of L-AHG and D-galactose.

Comparison of Agrobacterium-mediated Transformation Efficiency in 43 Korean Wheat Cultivars (국내 밀 43개 품종에 대한 아그로박테리움 형질전환 효율성 검정)

  • Jae Yoon Kim;Geon Hee Lee;Ha Neul Lee;Do Yoon Hyun
    • Journal of Practical Agriculture & Fisheries Research
    • /
    • v.25 no.4
    • /
    • pp.138-147
    • /
    • 2024
  • Agrobacterium-mediated transformation (AMT) is a method that allows for the stable integration of DNA fragments into the plant genome. Transgenic plants generated through AMT typically exhibit a lower copy number of the transgene compared to those induced by particle bombardment. Furthermore, AMT offers a straightforward and efficient approach for generating transgenic plants. While the transformation efficiency of wheat is comparatively lower than that of other monocot plants such as Rice (Oryza sativa L.) and Maize (Zea mays L.), the cultivars 'Bobwhites' and 'Fielder' are commonly employed for wheat transformation. To date, there have been no reported instances of successful development of transgenic plants using Korean wheat varieties through AMT. This study aims to assess the transformation efficiency of 43 Korean wheat cultivars using the GUS assay, with the goal of identifying suitable Korean wheat cultivars for AMT. The pCAMBIA1301 vector, carrying the β-glucuronidase (GUS) gene, was incorporated into Agrobacterium strain EH105. Following the inoculation of Agrobacterium into immature embryos, GUS assays were conducted 'Saeol', 'Jopum', and 'Jonong' showed 100% (the number of embryos showing GUS spots/the number of embryos used for AMT) among 43 cultivars. In addition, cultivars with more than 70% were 'Saekeumgang', 'Jojung', 'Tapdong', 'Anbaek', 'Dabun', 'Sugang', 'Keumgang', 'Jeokjung', 'Seodun', 'Joeun', 'Dajung', and 'Baekjung'. It seems that the 15 cultivars above showed the possibility of using AMT. On the other hand, 'Yeonbaek', 'Goso', 'Baekgang', and 'Johan' showed less than 20% and GUS spots were not observed in 'Gru', 'Gobun', 'Milseong', and 'Shinmichal-1'. This study explores transient GUS expression in Korean wheat cultivars seven days after AMT. The observed initial high efficiency of transient transformation suggests the potential for subsequent stable transformation efficiency. Korean wheat cultivars demonstrating elevated transient transformation efficiency could serve as promising candidates for the development of stable transgenic wheat.