• Title/Summary/Keyword: Exposure dose rate

Search Result 375, Processing Time 0.029 seconds

Estimation of Effective Dose to Residents Due to Hypothetical Accidents During Dismantling of Steam Generator

  • Kyeong-Ju Lee;Chang-Lak Kim
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.21 no.2
    • /
    • pp.183-191
    • /
    • 2023
  • The potential impact of hypothetical accidents that occur during the immediate and deferred dismantling of the Kori Unit 1 steam generator has been comprehensively evaluated. The evaluation includes determining the inventory of radionuclides in the Steam Generator based on surface contamination measurements, assuming a rate of release for each accident scenario, and applying external and internal exposure dose coefficients to assess the effects of radionuclides on human health. The evaluation also includes calculating the atmospheric dispersion factor using the PAVAN code and analyzing three years of meteorological data from Kori NPP to determine the degree of diffusion of radionuclides in the atmosphere. Overall, the effective dose for residents living in the Exclusion Area Boundary (EAB) of Kori NPP is predicted, an it is found that the maximum level of the dose is 0.034% compared to the annual dose limit of 1 mSv for the general public. This implies that the potential impact of hypothetical accidents on human health discussed above is within acceptable limits.

Comparison of Neurotoxicity Induced by Some Glutathione Depletors in Mouse Cortical Cell Cultures

  • Lee, Gee-Woon;Lee, Kuy-Sook;Park, Sah-Hoon;Bae, Choon-Sang;Kim, Jong-Keun
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.4 no.3
    • /
    • pp.177-183
    • /
    • 2000
  • We examined the neurotoxic effects of 3 glutathione (GSH) depletors, buthionine sulfoximine (BSO), diethyl maleate (DEM) and phorone, under the presence of trolox, cycloheximide (CHX), pyrrolidine dithiocarbamate (PDTC) or MK-801 in primary mouse cortical cell cultures. All three depletors induced neuronal death in dose and exposure time dependent manner, and decreased total cellular GSH contents. The patterns of the neuronal death and the GSH decrements were dependent on the individual agents. DEM $(200\;{\mu}M)$ induced rapid and irreversible decrement of the GSH. BSO (1 mM) also decreased the GSH irreversibly but the rate of decrement was more progressive than that of DEM. Phorone (1 mM) reduced the GSH content to 40% by 4 hr exposure, that is comparable to the decrement of BSO, but the GSH recovered and reached over the control value by 36 hr exposure. BSO showed a minimal neurotoxicity $(0{\sim}10%)$ at the end of 24 hr exposure, but marked neuronal cell death at the end of 48 hr exposure. The BSO (1 mM)-induced neurotoxicity was markedly inhibited by trolox or CHX and partially attenuated by MK-801. DEM induced dose-dependent cytotoxicity at the end of 24 hr exposure. Over the doses of $400\;{\mu}M,$ glial toxicity also appeared. DEM $(200\;{\mu}M)-induced$ neurotoxicity was markedly inhibited by trolox or PDTC. Phorone (1 mM) induced moderate neurotoxicity (40%) at the end of 48 hr exposure. Only CHX showed significant inhibitory effect on the phorone-induced neurotoxicity. These results suggest that the GSH depletors induce neuronal injury via different mechanisms and that GSH depletors should be carefully employed in the researches of neuronal oxidative injuries.

  • PDF

Radiation Safety and Education in the Applicants of the Final Test for the Expert of Pain Medicine

  • Park, Pyong-Eun;Park, Jung-Min;Kang, Joo-Eun;Cho, Jae-Hun;Cho, Suk-Ju;Kim, Jae-Hun;Sim, Woo-Seog;Kim, Yong-Chul
    • The Korean Journal of Pain
    • /
    • v.25 no.1
    • /
    • pp.16-21
    • /
    • 2012
  • Background: The C-arm fluoroscope is known as the most important equipment in pain interventions. This study was conducted to investigate the completion rate of education on radiation safety, the knowledge of radiation exposure, the use of radiation protection, and so on. Methods: Unsigned questionnaires were collected from the 27 pain physicians who applied for the final test to become an expert in pain medicine in 2011. The survey was composed of 12 questions about the position of the hospital, the kind of hospital, the use of C-arm fluoroscopy, radiation safety education, knowledge of annual permissible radiation dose, use of radiation protection, and efforts to reduce radiation exposure. Results: In this study, although most respondents (93%) had used C-arm fluoroscopy, only 33% of the physicians completed radiation safety education. Even though nine (33%) had received education on radiation safety, none of the physicians knew the annual permissible radiation dose. In comparing the radiation safety education group and the no-education group, the rate of wearing radiation-protective glasses or goggles and the use of radiation badges or dosimeters were significantly higher in the education group. However, in the use of other protective equipment, knowledge of radiation safety, and efforts to reduce radiation exposure, there were no statistical differences between the two groups. Conclusions: The respondents knew very little about radiation safety and had low interest in their radiation exposure. To make the use of fluoroscopy safer, additional education, as well as attention to and knowledge of practices of radiation safety are required for pain physicians.

Dose Reduction of the Adolescent Female Breast during Scoliosis Radiography (청소년기 여성의 척추측만증 검사에서 유방입사선량 저감효과)

  • Jin, Gye Hwan
    • Journal of the Korean Society of Radiology
    • /
    • v.12 no.3
    • /
    • pp.373-379
    • /
    • 2018
  • The purpose of this study was to investigate quantitative data on the difference in breast entrance surface dose with changes in focus-film distance, patient posture (anteroposterior-posteroanterior), thoracic wall thickness, rib bone thickness, lung tissue thickness, tube voltage, and high-voltage rectification method in Whole Spine Scanography, which is necessary for the treatment of scoliosis patients. Given a tube voltage of 90 kVp, kerma of 0.1 mGy, focus-film distance of 260 cm, tube voltage ripple rate of 0, filter thickness of 3.5 mm, and thickness of patient's thoracic wall of 120 mm as an X-ray exposure condition, from the simulation results using the Simulation of X-ray Spectra program to confirm the reduction effect of breast entrance surface dose according to the patient's posture (AP and PA), there was a dose reduction effect in aluminum filter thickness of 2.6 times at 3.5 mm, 25.7 times the thoracic wall thickness at 120 mm, 1.43 times higher tube voltage, and 0 to 1.14 times the tube voltage ripple rate. The total dose reduction effect was about 109 times. In order to confirm the dose reduction effect of RANDO phantom posture (AP and PA), from the results of the measurements taken under the conditions that the focus-film distance was 260 cm, the tube voltage was 90 kVp, the tube current was 270 mA, the exposure time was 0.31 sec, and the tube voltage ripple rate of X-ray generators was 0, the entrance surface dose reduction effect of the breast in the PA position was found to be 20.56 times lower than that of the AP position.

Entrance Surface Dose according to Dose Calculation : Head and Wrist (피폭선량 산출을 통한 피부입사선량 계산: 머리 및 손목을 중심으로)

  • Sung, Ho-Jin;Han, Jae-Bok;Song, Jong-Nam;Choi, Nam-Gil
    • Journal of radiological science and technology
    • /
    • v.39 no.3
    • /
    • pp.305-312
    • /
    • 2016
  • This study were compared with the direct measurement and indirect dose methods through various dose calculation in head and wrist. And, the modified equation was proposed considering equipment type, setting conditions, tube voltage, inherent filter, added filter and its accompanied back scatter factor. As a result, it decreased the error of the direct measurement than the existing dose calculation. Accordingly, diagnostic radiography patient dose comparison would become easier and radiogrphic exposure control and evaluation will become more efficient. The study findings are expected to be useful in patients' effective dose rate evaluation and dose reduction.

Collimator Design and Manufacture for $M{\ddot{o}}ssbauer$ Source ($M{\ddot{o}}ssbauer$ 선원용 콜리메이터 설계 및 제작)

  • Park, Sung-Ho;Kim, Jong-Kyung
    • Journal of Radiation Protection and Research
    • /
    • v.28 no.3
    • /
    • pp.183-187
    • /
    • 2003
  • Collimator for $M{\ddot{o}}ssbauer$ source was manufactured for compton scattering experiment. Exposure dose rate was calculated and measured using GM counter for radiation evaluation. These results were well agreed to each other and used for collimator design. SUS303 was used for collimator material because exposure dose rate at 10 cm is about 2 mR/h. The radiation emited from the 35 mm, 65 mm hole was measured using gamma camera which have 4' diameter. 2-D radiation image was acquired and analyzed. The radiation size at Gamma Camera was 8.0 mm and 5.8 mm respectively.

Transmission Dose Measurement of Gamma-ray Using Tungsten Shield (텅스텐 차폐체의 감마선 투과선량 측정)

  • Han, Sang-Hyun;Koo, Bon-Yeoul
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.9
    • /
    • pp.124-129
    • /
    • 2018
  • This study was conducted to investigate the penetration dose and shielding rates of tungsten shields used in apron material by changing the type of source used in the nuclear medicine department, thickness of shielding material and distance between the source and detector. For the experiment, the source, shield, and detector were arranged in a straight line and measured with an inspector at a height of 100 cm. The highest shielding effect of tungsten was measured for $^{201}Tl$, while $^{123}I$ showed a higher shielding effect than $^{99m}Tc$. For the sources used in the experiment, the penetration dose decreased with distance and the shielding rate was measured with thicker thickness. However, the shielding rate of $^{13}1I$ and $^{18}F$ sources was found to be lower than when there was no shielding at 0.25 mmPb shield. Therefore, even if the radiation shielding effect of tungsten is high, considering the characteristics according to the type of source and the thickness of the shielding material, it may be helpful to reduce the exposure.

The Study of Radiation Exposed dose According to 131I Radiation Isotope Therapy (131I 방사성 동위원소 치료에 따른 피폭 선량 연구)

  • Chang, Boseok;Yu, Seung-Man
    • Journal of the Korean Society of Radiology
    • /
    • v.13 no.4
    • /
    • pp.653-659
    • /
    • 2019
  • The purpose of this study is to measure the (air dose rate of radiation dose) the discharged patient who was administrated high dose $^{131}I$ treatment, and to predict exposure radiation dose in public person. The dosimetric evaluation was performed according to the distance and angle using three copper rings in 30 patients who were treated with over 200mCi high dose Iodine therapy. The two observer were measured using a GM surverymeter with 8 point azimuth angle and three difference distance 50, 100, 150cm for precise radion dose measurement. We set up three predictive simulations to calculate the exposure dose based on this data. The most highest radiation dose rate was showed measuring angle $0^{\circ}$ at the height of 1m. The each distance average dose rate was used the azimuth angle average value of radiation dose rate. The maximum values of the external radiation dose rate depending on the distance were $214{\pm}16.5$, $59{\pm}9.1$ and $38{\pm}5.8{\mu}Sv/h$ at 50, 100, 150cm, respectively. If high dose Iodine treatment patient moves 5 hours using public transportation, an unspecified person in a side seat at 50cm is exposed 1.14 mSv radiation dose. A person who cares for 4days at a distance of 1 meter from a patient wearing a urine bag receives a maximum radiation dose of 6.5mSv. The maximum dose of radiation that a guardian can receive is 1.08mSv at a distance of 1.5m for 7days. The annual radiation dose limit is exceeded in a short time when applied the our developed radiation dose predictive modeling on the general public person who was around the patients with Iodine therapy. This study can be helpful in suggesting a reasonable guideline of the general public person protection system after discharge of high dose Iodine administered patients.

A Study on Predictive Modeling of I-131 Radioactivity Based on Machine Learning (머신러닝 기반 고용량 I-131의 용량 예측 모델에 관한 연구)

  • Yeon-Wook You;Chung-Wun Lee;Jung-Soo Kim
    • Journal of radiological science and technology
    • /
    • v.46 no.2
    • /
    • pp.131-139
    • /
    • 2023
  • High-dose I-131 used for the treatment of thyroid cancer causes localized exposure among radiology technologists handling it. There is a delay between the calibration date and when the dose of I-131 is administered to a patient. Therefore, it is necessary to directly measure the radioactivity of the administered dose using a dose calibrator. In this study, we attempted to apply machine learning modeling to measured external dose rates from shielded I-131 in order to predict their radioactivity. External dose rates were measured at 1 m, 0.3 m, and 0.1 m distances from a shielded container with the I-131, with a total of 868 sets of measurements taken. For the modeling process, we utilized the hold-out method to partition the data with a 7:3 ratio (609 for the training set:259 for the test set). For the machine learning algorithms, we chose linear regression, decision tree, random forest and XGBoost. To evaluate the models, we calculated root mean square error (RMSE), mean square error (MSE), and mean absolute error (MAE) to evaluate accuracy and R2 to evaluate explanatory power. Evaluation results are as follows. Linear regression (RMSE 268.15, MSE 71901.87, MAE 231.68, R2 0.92), decision tree (RMSE 108.89, MSE 11856.92, MAE 19.24, R2 0.99), random forest (RMSE 8.89, MSE 79.10, MAE 6.55, R2 0.99), XGBoost (RMSE 10.21, MSE 104.22, MAE 7.68, R2 0.99). The random forest model achieved the highest predictive ability. Improving the model's performance in the future is expected to contribute to lowering exposure among radiology technologists.

External dose assessment for workers dismantling the bio-shield of a commercial power nuclear reactor: Case study of Kori-1, Korea

  • Lee, ChoongWie;Lee, Donghyun;Kim, Hee Reyoung;Lee, Seung Jun
    • Nuclear Engineering and Technology
    • /
    • v.52 no.9
    • /
    • pp.2085-2091
    • /
    • 2020
  • The license for Kori-1, the first commercial reactor in Busan, Korea, was terminated in June 2017; therefore, preparations are being made for its decommissioning. Because the radioactivity of Bio-shield varies greatly throughout the structure, the doses received by the workers depend on the location, order, and duration of dismantling operations. Thus, a model for evaluating the worker external dose during the dismantling of the Kori-1 bio-shield was developed, and work scenarios for dose assessment were designed. The Dose evaluation code VISIPLAN was used for dose assessment. The dose rate around the bio-shield was evaluated and the level of exposure to the operator was evaluated according to the work scenario. The maximum annual external dose was calculated as 746.86 mSv for a diamond wire saw operator under dry cutting conditions, indicating that appropriate protective measures, such as changing dismantling sequence, remote monitoring, shield installation, and adjustment of work team are necessary for the safe dismantling of the bio-shield. Through these protective measures, it was found that the worker's dose could be below the dose limit.