• Title/Summary/Keyword: Exposure biomarker

Search Result 182, Processing Time 0.027 seconds

Association of Biomarker Levels with Severity of Asbestos-Related Diseases

  • Park, Eun-Kee;Yates, Deborah H.;Creaney, Jenette;Thomas, Paul S.;Robinson, Bruce W.;Johnson, Anthony R.
    • Safety and Health at Work
    • /
    • v.3 no.1
    • /
    • pp.17-21
    • /
    • 2012
  • Objectives: Asbestos-related diseases (ARDs) have increased globally over the decades, causing an economic burden and increased health care costs. It is difficult to predict the risk of development of ARDs and of respiratory disability among workers with a history of asbestos exposure. Blood based biomarkers have been reported as promising tools for the early detection of malignant mesothelioma. This study investigated whether serum soluble mesothelin-related peptide (SMRP) would reflect severity of disablement in compensable ARDs. Methods: SMRP levels were measured in a cohort of 514 asbestos-exposed subjects. Severity of ARDs was assessed by a Medical Authority comprising four specially qualified respiratory physicians. Severity of ARDs and SMRP levels were compared. Results: Mean (standard deviation) serum SMRP level in the population with compensable ARDs (n = 150) was 0.95 (0.65) nmol/L, and was positively associated with disability assessment (p = 0.01). Mean SMRP level in healthy asbestos-exposed subjects was significantly lower than those with pleural plaques (p < 0.0001) and in subjects with ARDs who received compensation (p < 0.01). Conclusion: This study indicates that serum SMRP levels correlate with severity of compensable ARDs. Serum SMRP could potentially be applied to monitor progress of ARDs. Further prospective work is needed to confirm the relationship between SMRP and disability assessment in this population.

Toxicogenomic Analysis and Identification of Estrogen Responsive Genes of Di (n-ethylhexyl) Phthalate in MCF-7 Cells

  • Kim, Youn-Jung;Yun, Hye-Jung;Ryu, Jae-Chun
    • Molecular & Cellular Toxicology
    • /
    • v.1 no.3
    • /
    • pp.149-156
    • /
    • 2005
  • Di (n-ethylhexyl) phthalate (DEHP) is thought to mimic estrogens in their action, and are called endocrine disrupting chemicals. DEHP is used in numerous consumer products, especially those made of flexible polyvinyl chloride and have been reported to be weakly estrogenic. In this study, DEHP were tested for estrogenic properties in vitro models and with microarray analysis. First, the E-screen assay was used to measure the proliferation of DEHP in MCF-7 cells, a human breast cancer cell line. DEHP induced an increase in MCF-7 cell proliferation at concentration of $10^{-4}M$. Second, we carried out a microarray analysis of MCF-7 cells treated with DEHP using human c-DNA microarray including 401 endocrine system related genes. Of the genes analyzed, 60 genes were identified showing significant changes in gene expression resulting from DEHP. Especially, 4 genes were repressed and 4 genes were induced by DEHP compared to $17{\beta}-estradiol$. Among these genes, trefoil factor 3 (intestinal), breast cancer 1, early onset and CYP1B1 are involved in estrogen metabolism and regulation. Therefore it suggests that these genes may be associated with estrogenic effect of the DEHP on transcriptional level. The rationale is that, as gene expression is a sensitive endpoint, alterations of these genes may act as useful biomarkers to define more precisely the nature and level of exposure to kinds of phthalates.

Increased Frequency of Micronuclei in Binucleated Lymphocytes among Occupationally Pesticide-exposed Populations: A Meta-analysis

  • Yang, Hai-Yan;Feng, Ruo;Liu, Jing;Wang, Hai-Yu;Wang, Ya-Dong
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.15 no.16
    • /
    • pp.6955-6960
    • /
    • 2014
  • Background: The cytokinesis-block micronucleus (CBMN) assay is a standard cytogenetic tool employed to evaluate chromosomal damage subsequent to pesticide exposure. Objectives: To evaluate the pooled levels of total micronuclei (MN) and binucleated cells with micronuclei (MNC) in 1000 binucleated lymphocytes among population occupationally exposed to pesticides and further determine the more sensitive biomarker of CBMN. Materials and Methods: A meta-analysis on the pooled levels of MN and MNC in binucleated lymphocytes among occupationally pesticide-exposed populations was conducted using STATA 10.0 software and Review Manager 5.0.24 in this study. Results: We found significant differences in frequencies of MN and MNC in 1000 binucleated lymphocytes between pesticide-exposed groups and controls, and the summary estimates of weighted mean difference were 6.82 [95% confidence interval (95% CI): 4.86-8.78] and 5.08 (95% CI: 2.93-7.23), respectively. However, when we conducted sensitivity analyses further, only the MN remained statistically different, but not the MNC, the summary estimates of weight mean difference were 2.86 (95% CI: 2.51-3.21) and 0.50 (95% CI: -0.16-1.17), respectively. We also observed pesticide-exposed subjects had significantly higher MN frequencies than controls among smokers and nonsmokers, male and female populations, and American, Asian and European countries in stratified analyses. Conclusions: The frequency of MN in peripheral blood lymphocytes might be a more sensitive indicator of early genetic effects than MNC using the CBMN assay for occupationally pesticide-exposed populations.

CHANGING OF RGS TRANSCRIPTS LEVELS BY LOW-DOSE-RATE IONIZING RADIATION IN MOUSE TESTIS

  • Kim, Tae-Hwan;Baik, Ji Sue;Heo, Kyu;Kim, Joong Sun;Lee, Ki Ja;Rhee, Man Hee;Kim, Sung Dae
    • Journal of Radiation Protection and Research
    • /
    • v.40 no.3
    • /
    • pp.187-193
    • /
    • 2015
  • Deleterious effects of high dose radiation exposure with high-dose-rate are unarguable, but they are still controversial in low-dose-rate. The regulator of G-protein signaling (RGS) is a negative regulator of G protein-coupled receptor (GPCR) signaling. In addition, it is reported that irradiation stress led to GPCR-mediated mitogen-activated protein kinase (MAPK) and phosphotidylinositol 3-kinase (PI3-k) signaling. The RGS mRNA expression profiles by whole body radiation with low-dose-rate has not yet been explored. In the present study, we, therefore, examined which RGS was modulated by the whole body radiation with low-dose-rate ($3.49mGy{\cdot}h^{-1}$). Among 16 RGS expression tested, RGS6, RGS13 and RGS16 mRNA were down-regulated by low-dose-rate irradiation. This is the first report that whole body radiation with low-dose-rate can modulate the different RGS expression levels. These results are expected to reveal the potential target and/or the biomarker proteins associated with male testis toxicity induced by low-dose-rate irradiation, which might contribute to understanding the mechanism beyond the testis toxicity.

Cloning and Expression of Phytochelatin Synthase 1 Gene from Rhizophora stylosa Exposed to Cadmium and Copper (카드뮴과 구리에 노출된 Rhizophora stylosa 의 phytochelatin synthase 1 유전자 클로닝 및 발현)

  • Lee, Gunsup;Hwang, Jinik;Park, Mirye;Chung, Youngjae;Lee, Taek-Kyun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.14 no.6
    • /
    • pp.3114-3119
    • /
    • 2013
  • The mangrove ecosystems have the capacity to act as a sink of heavy metals entering aquatic ecosystems. Despite their potential exposure to metal contaminated sediments, mangroves appear to be highly tolerant to heavy metals. In this study, we cloned metal tolerance gene from mangrove plant. Using CTAB method, RNA were isolated from leaves and root tissue of Rhizophora stylosa habitated at Weno island in Micronesia Chuuk lagoon using CTAB method and phytochelatin synthase 1 (PCS1) gene was cloned using gene specific primers. Expression of PCS1 gene was increased 1.91 fold and 2.72 fold in mangrove propagules exposed to 100 ppb Cd and 10 ppb Cu, respectively. These results indicate that expression of PCS1 gene are promising tools for health assessment of mangrove ecosystem.

Proteomics Analysis of Early Salt-Responsive Proteins in Ginseng (Panax ginseng C. A. Meyer) Leaves (초기 염류 스트레스 반응 인삼 잎 단백질체 분석)

  • Kim, So Wun;Min, Chul Woo;Gupta, Ravi;Jo, Ick Hyun;Bang, Kyong Hwan;Kim, Young-Chang;Kim, Kee-Hong;Kim, Sun Tae
    • Korean Journal of Medicinal Crop Science
    • /
    • v.22 no.5
    • /
    • pp.398-404
    • /
    • 2014
  • Salt stress is one of the major abiotic stresses affecting the yield of ginseng (Panax ginseng C. A. Meyer). The objective of this study was to identify bio-marker, which is early responsive in salt stress in ginseng, using proteomics approach. Ginseng plants were exposed to 5 ds/m salt concentration and samples were harvested at 0, 6, 12 and 18 hours after exposure. Total proteins were extracted from ginseng leaves treated with salt stress using Mg/NP-40 buffer and were separated on high resolution 2-DE. Approximately $1003{\pm}240$ (0 h), $992{\pm}166$ (6 h), $1051{\pm}51$ (12 h) and $990{\pm}160$ (18 h) spots were detected in colloidal CBB stained 2D maps. Among these, 8 spots were differentially expressed and were identified by using MALDI-TOF/TOF MS or/and LC-MS/MS. Ethylene response sensor-1 (spot GL 1), nucleotide binding protein (spot GL 2), carbonic anhydrase-1 (spot GL 3), thylakoid lumenal 17.9 kDa protein (spot GL 4) and Chlorophyll a/b binding protein (spot GL 5, GL 6) were up-regulated at the 12 and 18 hour, while RuBisCO activase B (spot GL 7) and DNA helicase (spot GL 8) were down-regulated. Thus, we suggest that these proteins might participate in the early response to salt stress in ginseng leaves.

Radiobiological Evaluation in Korean Native Goat Bred in the Nuclear Power Plant (원자력발전소 사육 재래산양의 방사선 생물학적 평가)

  • Kim, Se-Ra;Kim, Tae-Hwan;Lee, Hae-Jun;Oh, Heon;Cho, Sung-Ki;Oh, Ki-Seok;Park, In-Chul;Son, Chang-Ho;Kim, Sung-Ho
    • Journal of Veterinary Clinics
    • /
    • v.20 no.3
    • /
    • pp.317-322
    • /
    • 2003
  • Cytogenetic and hematological analysis was performed in peripheral blood from the Korean native goat bred in the nuclear power plant (Wolsong and Uljin) and control area. The frequency of micronuclei (MN) in peripheral blood lymphocytes from goat was used as a biomarker of radiobiological effects resulting from exposure to environmental radiation. An estimated dose of radiation was calculated by best fitting linear-quadratic model based on the radiation-induced MN data over the range from 0 to 4 Gy from the goat lymphocytes with in vitro irradiation. MN rates in goats from the Wolsong and Uljin nuclear power plant, and control area were 9.60/1000, 6.83/1000 and 9.88/1000, respectively. There were no significant differences in MN frequencies and hematological values in goats between nuclear power plant and control area. High level of platelet in the goat from Uljin nuclear power plant was observed, which seemed to be related to the goat management.

Life Cycle, Morphology and Gene Expression of Harpacticoid Copepod, Tigriopus japonicus s.l. Exposed to 4-nonylphenol (4-nonylphenol에 노출된 저서성 요각류 Tigriopus joponicus s.l.의 생활사, 형태와 유전자 발현)

  • Bang, Hyun-Woo;Lee, Won-Choel;Lee, Seung-Han;Kwak, Inn-Sil
    • Korean Journal of Ecology and Environment
    • /
    • v.41 no.1
    • /
    • pp.81-89
    • /
    • 2008
  • The eco-toxicological effects of endocrine disrupter, 4-nonylphenol (4NP) were observed and detected on the harpacticoid copepod, Tigriopus japonicus s.l. obtained and cultur-ed from our coast. There were no significant differences survival rate, sex ratio, and fecundity on T. japonicus s.l. at as low as $30{\mu}gL^{-1}$ of 4 NP exposure. Whereas, 4NP induced developmental delay, decreasing biomass and body size of nauplius and copepodite. Also, Differentially Expressed Gene (DEG) was conducted to detecting gene expression for potential biomarkers response to 4NP. As a result, full lifecycle research on morphology and gene expression of T. japonicus s.l. suggested potential bioindicators or biomarkers for environmental monitoring and assessments.

Ginseng root-derived exosome-like nanoparticles protect skin from UV irradiation and oxidative stress by suppressing activator protein-1 signaling and limiting the generation of reactive oxygen species

  • Wooram Choi;Jeong Hun Cho;Sang Hee Park;Dong Seon Kim;Hwa Pyoung Lee;Donghyun Kim;Hyun Soo Kim;Ji Hye Kim;Jae Youl Cho
    • Journal of Ginseng Research
    • /
    • v.48 no.2
    • /
    • pp.211-219
    • /
    • 2024
  • Background: Recently, plant-derived exosome-like nanoparticles (PDENs) have been isolated, and active research was focusing on understanding their properties and functions. In this study, the characteristics and molecular properties of ginseng root-derived exosome-like nanoparticles (GrDENs) were examined in terms of skin protection. Methods: HPLC-MS protocols were used to analyze the ginsenoside contents in GrDENs. To investigate the beneficial effect of GrDENs on skin, HaCaT cells were pre-treated with GrDENs (0-2 × 109 particles/mL), and followed by UVB irradiation or H2O2 exposure. In addition, the antioxidant activity of GrDENs was measured using a fluorescence microscope or flow cytometry. Finally, molecular mechanisms were examined with immunoblotting analysis. Results: GrDENs contained detectable levels of ginsenosides (Re, Rg1, Rb1, Rf, Rg2 (S), Gyp17, Rd, C-Mc1, C-O, and F2). In UVB-irradiated HaCaT cells, GrDENs protected cells from death and reduced ROS production. GrDENs downregulated the mRNA expression of proapoptotic genes, including BAX, caspase-1, -3, -6, -7, and -8 and the ratio of cleaved caspase-8, -9, and -3 in a dose-dependent manner. In addition, GrDENs reduced the mRNA levels of aging-related genes (MMP2 and 3), proinflammatory genes (COX-2 and IL-6), and cellular senescence biomarker p21, possibly by suppressing activator protein-1 signaling. Conclusions: This study demonstrates the protective effects of GrDENs against skin damage caused by UV and oxidative stress, providing new insights into beneficial uses of ginseng. In particular, our results suggest GrDENs as a potential active ingredient in cosmeceuticals to promote skin health.

Environmental Pollutants in Streams of Andong District and Insect Immune Biomarker (안동지역 하천의 환경오염물질과 곤충면역 생체지표 분석)

  • Ryoo Keon Sang;Ko Seong-Oon;Cho Sunghwan;Lee Hwasung;Kim Yonggyun
    • Korean journal of applied entomology
    • /
    • v.44 no.2
    • /
    • pp.97-108
    • /
    • 2005
  • Samples of water, soil, and sediment were taken from 10 streams near Andong, Korea in May 2004. To assess the degree of environmental pollution of each stream, chemical pollutants such as total notrogen (T-N), total phosphorus (T-P), chemical oxygen demand (COD), heavy metals, organophosphorus pesticides, organochlorine pesticides, and dioxin-like PCB congeners were analyzed by standard process tests or U.S. EPA methods. In addition, biomarkers originated from insect immune systems of beet armyworm, Spodoptera exigua, were used to analysis of the environmental samples. Except Waya-chun stream showing T-N content of 9.12 mg/L, most streams were contaminated with relatively low levels of overall pollutants in terms of T-N, T-P, and COD, compared to their acceptable environmental levels designated by the Ministry of Environment. Contents of Pb and Cd in samples of each stream were much lower than environmentally permissible levels. However, several times higherconcentrations of Pb and Cd were found in locations at Mi-chun, Kilan-chun, and Hyunha-chun streams, in comparison with other streams. Diazinon, parathion, and phenthoate compounds among organophosphorus pesticides were detected as concentrations of 0.19, 0.40, and $1.13\;{\mu}g/g$, respectively, from soil sample collected in the vicinity of Mi-chun stream. On the other hand, 16 organochlorine pesticides and 12 dioxin-like PCB congeners, known as endocrine disrupting chemicals, selected in this study were not found above the limit of detection. Biomarker analyses using insect immune responses indicated that Waya-chun stream was suspected as exposure to environmental pollutants. Limitation and compensation of both environmental analysis techniques are discussed.