• 제목/요약/키워드: Explosive Welding

검색결과 32건 처리시간 0.017초

이종재료의 폭발용접특성 해석에 관한 컴퓨터 시뮬레이션 (Computer Simulation on the Explosive Welding Characteristics of Dissimilar Materials)

  • 김청균;김명구;손원호
    • 대한기계학회논문집
    • /
    • 제17권12호
    • /
    • pp.3028-3044
    • /
    • 1993
  • A metallic bond of great strength for the same or dissimilar metals can be produced by the explosive welding. The formation of a metallic jet at the interface between the two impacting plates has been simulated using the numerical hydrocode DYNA2D. The mechanism of explosive welding for the wave formation is also analyzed by the computer simulation technique. The microscopic with the experimentally observed behaviour of the explosive welding. The computer simulations of the explosive welding process have proven especially useful for analyzing the mechanism of metallic bones.

폭발압접에 대한 갱도의 안정성 분석 (Stability Analysis of Mine Drift for Explosive Welding)

  • 양형식;장명환;장형두
    • 화약ㆍ발파
    • /
    • 제28권1호
    • /
    • pp.55-62
    • /
    • 2010
  • 광산의 채광장 활용을 위해 갱도 내에서 폭발압접이 계획되었다. 폭발압접의 입사압력에 의해 영향을 받을 것으로 예상되는 갱도의 천단부와 주변 광주의 안정성 분석 실시하였다. 폭풍압의 예측은 일반식, CONWEP 및 DDESB의 식을 이용하였다. 분석결과 폭발압접이 지속적으로 이뤄진다면 광산 채굴적에 상당한 영향을 줄 수 있을 것으로 판단되었다.

타이타늄-구리 폭발압접 이종 클래드 판재의 TIG 용접 건전성 평가 (Evaluation of Welding Soundness of Titanium-Copper Explosive-Bonded Dissimilar Clad Plate by TIG Welding)

  • 조평석;윤창석;황효운;이동근
    • 열처리공학회지
    • /
    • 제34권2호
    • /
    • pp.66-74
    • /
    • 2021
  • Cladding material, which can selectively obtain excellent properties of different metals, is a composite material that combines two or more types of dissimilar metals into one plate. The titanium-copper cladding material between titanium which has excellent corrosion resistance and copper which has high thermal and electrical conductivity, are highly valuable composite materials. It can be used as heat exchangers with high conductivity under severe corrosion conditions. In order to apply the clad plate to the heat exchanger, it must be manufactured in the form of a tube and additional welding is required. It is important to select the cladding material manufacturing process and the welding process. The process of manufacturing the cladding material includes extrusion, rolling, and explosive bonding. Among them, the explosive bonding process is suitable for additional welding because no heat-affected zone is formed. In this study TIG welding of the explosive-bonded dissimilar clad plates was successfully performed by butt welding. The microstructures and bonding interface of the welded part were observed, and the effect of the bonding layer at the welding interface and the intermetallic compounds on the mechanical properties and tensile plastic deformation behaviors were analyzed. And also the integrity of TIG-welded dissimilar part was evaluated.

State detection of explosive welding structure by dual-tree complex wavelet transform based permutation entropy

  • Si, Yue;Zhang, ZhouSuo;Cheng, Wei;Yuan, FeiChen
    • Steel and Composite Structures
    • /
    • 제19권3호
    • /
    • pp.569-583
    • /
    • 2015
  • Recent years, explosive welding structures have been widely used in many engineering fields. The bonding state detection of explosive welding structures is significant to prevent unscheduled failures and even catastrophic accidents. However, this task still faces challenges due to the complexity of the bonding interface. In this paper, a new method called dual-tree complex wavelet transform based permutation entropy (DTCWT-PE) is proposed to detect bonding state of such structures. Benefiting from the complex analytical wavelet function, the dual-tree complex wavelet transform (DTCWT) has better shift invariance and reduced spectral aliasing compared with the traditional wavelet transform. All those characters are good for characterizing the vibration response signals. Furthermore, as a statistical measure, permutation entropy (PE) quantifies the complexity of non-stationary signals through phase space reconstruction, and thus it can be used as a viable tool to detect the change of bonding state. In order to more accurate identification and detection of bonding state, PE values derived from DTCWT coefficients are proposed to extract the state information from the vibration response signal of explosive welding structure, and then the extracted PE values serve as input vectors of support vector machine (SVM) to identify the bonding state of the structure. The experiments on bonding state detection of explosive welding pipes are presented to illustrate the feasibility and effectiveness of the proposed method.

폭약살포 높이에 따른 Al/steel 폭발 접합계면의 형상 및 조직 변화에 관한 연구 (A Study on the Shape and Microstructural Change of Explosion-Welding Al/Steel Interface with Explosive Thickness)

  • 김희진;강봉용
    • Journal of Welding and Joining
    • /
    • 제14권4호
    • /
    • pp.62-70
    • /
    • 1996
  • Al or Al-alloy have been known to be able to be claded on various materials by using explosive welding process, however, the intermetallic layer frequently formed along the interface have made this process very complicated. In this study, it was focussed to select the process variables, which can get rid of interfacial layer in the Al-claded steel plate. As a result, it was demonstrated that there was a certain range of explosive thickness which did not form the intermetallic phase as well as the non-bonded area. On the other hand, ultasonic tests performed for identifying the presence of interfacial layer nondestructively showed that it could be applied for the intended purpose but its result was weakly related with the microstructural quality of interface.

  • PDF

폭발접합된 열교환기류 튜브와 튜브시트의 계면 특성에 관한 고찰 (A Study on the Tube/tubesheet Interface in the Heat Exchangers Jointed by Explosive Bonding)

  • 이병일;공창식;이상철
    • Journal of Welding and Joining
    • /
    • 제18권4호
    • /
    • pp.38-47
    • /
    • 2000
  • Characteristics of the interface between tube and tube sheet which were formed by explosive expansion and roll expansion, have been studied in the research. The results are as follows: Optimum amounts of explosives for the expansion of Alloy 600 (19.05mm and 15.88mm) were found to be RDX 3.5-8.5g/m. Because explosive expansion caused les strain hardening and increased bounding strength, characteristics of the explosively expanded were better than those of mechanically expanded. As the transition region of the explosive expansion is inactive, the resistance to the stress corrosion cracking increases by 30∼40% compared to the roll and hydraulic expansion.

  • PDF

폭발용접에서 부재의 충돌속도에 관한 실험적 연구 (Experimental Study on the Flyer Velocity in Explosive Welding)

  • 문정기;김청균
    • 대한기계학회논문집
    • /
    • 제17권6호
    • /
    • pp.1423-1430
    • /
    • 1993
  • 본 연구에서는 레이저를 사용한 부재의 충돌속도 계측 실험을 통하여 기존 연구자들의 연구 결과를 비교하고, 이 결과를 바탕으로 보다 간단하고 유용한 실험식 을 제안하고자 한다.

폭약변수에 따른 폭발속도 변화에 관한 연구 (A Study on the Change of Detonation Velocity with Explosive Variables)

  • 김희진;강봉용
    • Journal of Welding and Joining
    • /
    • 제14권2호
    • /
    • pp.65-70
    • /
    • 1996
  • Detonation velocity of domestic expolsives was measured using the Dautriche method. The variables employed in this study were the thickness of explosive and the amount of salt added in the ammonium nitrate(AN) explosive. As the results of this study, it was shown that the detonation velocity increases with an increase of explosive thickness but decreases with an increase of salt content. It was further demonstrated that the detonation velocity decreases rather rapidly when the salt content increases over 20 percent. In addition, the accuracy of Dautriche method was evaluated as a preliminary study and its result showed that this method is quite reliable with an experimental error of less than 10 pct.

  • PDF

유한요소법을 이용한 강-티타늄 이종소재의 폭발 용접조건 해석 (On the Explosive Welding Characteristics of Steel-Titanium Dissimilar Materials Using finite Element Method)

  • 김청군;김명구;심상한;문정기
    • 대한기계학회논문집A
    • /
    • 제20권3호
    • /
    • pp.825-831
    • /
    • 1996
  • 폭약의 폭발시 발생되는 초고압 충격 에너지를 이용한 강-티타늄 이종재질의 폭발접합 특성을 한요소기법에 의하여 실험적인 방법으로는 해석하기 어려운 미시적 관점의 접합조건을 해석하였다. 서로 다른 이종재질간의 접합에서 HI-DYNA2D 유한요소 코드를 이용한 계산결과에 의하면 충돌부근에서의 압력크기는 기존에 수행하였던 Oberg등의 수치적 해석결과와 잘 일치하고 있다. 한편, 폭약이 정상적인 폭발에너지를 발생시키기 위해서는 폭약이 30mm이상의 두께를 유지하여야 하며 50mm이상의 폭약두께는 폭접소재의 접합에 별다른 영향을 주지 못하고 있다. 즉, 폭약을 적게 사용하면 접합에너지가 부족하여 접합이 약하고, 폭약이 과도하게 많게되면 폭약의 손실이 많이 되므로 폭발용접 설계시 이들의 양을 미리 명확하게 예측하는 것이 대단히 중요함을 제시하였다. 한 평행한 상태에서 강-티타늄 이중소재를 접합할 경우의 이격거리는 3-5mm로 유지하는 것이 가장 양호한 접합상태를 얻을 수 있는 것으로 해석된다. 본 연구에서는 폭발용접의 접합특성 해석과 이에 강-티타늄 이종재질의 접합 설계조건을 실험적인 방법으로 구하지 않고, HI-DYNA2D 코드를 활용한 반복작업을 통하여 접합조건의 설계데이터를 충분히 얻을 수 있음을 확인하였다.