• Title/Summary/Keyword: Explosion load

Search Result 109, Processing Time 0.038 seconds

Injury Assessment and Analysis under Blast Load Using MADYMO (MADYMO를 이용한 폭발 하중에 따른 인체 상해평가 및 분석)

  • Choi, Ho-Min;Kim, Jae-Ki;Pack, In-Seok;Lee, In-Young;Kwon, Dae-Ryeong;Lee, Seok-Soon
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.16 no.1
    • /
    • pp.24-29
    • /
    • 2017
  • There is a need for explosion experiments for explosion-related research. However, there are many restrictions in performing an actual experiment. Therefore, in this paper, an alternative method of overcoming the constraints of an explosion experiment has been conducted using a passenger behavior analysis program called MADYMO to assess and analyze the human body injury due to explosion load. To increase the reliability of the analysis, a drop test has been conducted with the analysis. We provide a new framework for performing the analysis. In future, we will further develop our research with the goal of reducing the opportunity cost for the study of the human body injury.

An Experimental Study on the Mechanical Properties of High Strength of High Strength Concrete Subject to High Temperature Heating (고온가열을 받은 고강도 콘크리트의 역학적 특성에 관한 실험적 연구)

  • Lee, Tae-Gyu;Sin, Seung-Bong;Kim, Young-Sun;Lee, Seung-Hoon;Kim, Gyu-Yong;Kim, Moo-Han
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2007.04a
    • /
    • pp.9-12
    • /
    • 2007
  • Recently, research and development related to high strength concrete for the high rise and large scale reinforced concrete building has been actively promoted in worldwide by national and private research project. But, it is reported that violent explosive explosion would be happened when it was exposed in fire. In the existed study, a explosion in a reinforced concrete structure looses the organism by the different contraction and expansion of hardened cement paste and aggregate, and causes crack by thermal stress. In case of the Europe, Japan and America, they have studied the explosion for a long time. However it would hardly study the explosion in domestic, So it is needed base on mechanical properties of fire deterioration in high strength concrete. Therefore, this study is intend as an mechanical properties of specimen to high heating by heating and load test machine and $700^{\circ}C$. As a result, it is willing to propose fundamental data for quick and accurate diagnosis of deteriorated concrete structure by fire damage with experiment according to the design high strength concrete.

  • PDF

An Efficient Load Balancing Technique Considering Forms of Data Generation in SDNs (SDN 환경에서의 데이터 생성 형태를 고려한 효율적인 부하분산 기법)

  • Yoon, Jiyoung;Kwon, Taewook
    • Journal of Korea Multimedia Society
    • /
    • v.23 no.2
    • /
    • pp.247-254
    • /
    • 2020
  • The recent Internet environment is characterized by the explosion of certain types of data, as the data that people want is affected by certain issues. In this paper, we propose a load balancing technique that considers the data generation forms. The concept of this technique is to prioritize some type of data when it suddenly explodes. This is a technique to build an add-on middle box on a switch to monitor packets and give priority to a queue for load balancing. This technique worked when certain types of data exploded. SDN(Software Defined Networking) has the advantage of efficiently managing a number of network equipment. However, load balancing in the SDN environment has not been studied much. Applying the proposed load balancing technique in the SDN environment can save time and budget and easily implement our policies. When the proposed load balancing technique is applied to the SDN environment, it has been found that the techniques we want can be easily applied to the network systems, and that efficient data processing is possible when certain types of data explosion.

Determination of Blast Load on the Boreholes Wall Using Decoupled Charge (Decoupling 장전시 천공벽에 작용하는 발파하중의 산정)

  • Kim, Sang-Gyun;Lee, In-Mo;Choi, Jong-Won;Kim, Shin;Lee, Du-Wha
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 1999.10a
    • /
    • pp.209-216
    • /
    • 1999
  • In tunneling and road cuts by blasting, it is of the utmost importance that the remaining rock is of high quality in order to avoid rockfall, rockslides and excessive maintenance work. Therefore, numerous blasting techniques which make use of decoupled charge or shock wave superposition effect have been used to control overbrake. In this paper. some approximate method for the determination of blast load according to the charge condition was introduced at first and, instrumented tests were conducted in small scale transparent material to investigate the shape and amplitude of blast load around the bore hole. Compare to the fully coupled charge, low amplitude of blast load around the bore hole was observed in the decoupled charge and explosion gas pressure was important in the shape of blast load. Therefore, quasi-static behaviour of the crack pattern was shown due to low loading rate.

  • PDF

Dynamic tensile behavior of SIFRCCs at high strain rates

  • Kim, Seungwon;Park, Cheolwoo;Kim, Dong Joo
    • Computers and Concrete
    • /
    • v.26 no.3
    • /
    • pp.275-283
    • /
    • 2020
  • Reinforced concrete (RC) does not provide sufficient resistance against impacts and blast loads, and the brittle structure of RC fails to protect against fractures due to the lack of shock absorption. Investigations on improving its resistance against explosion and impact have been actively conducted on high-performance fiber-reinforced cementitious composites (HPFRCCs), such as fiber-reinforced concrete and ultra-high-performance concrete. For these HPFRCCs, however, tensile strength and toughness are still significantly lower compared to compressive strength due to their limited fiber volume fraction. Therefore, in this study, the tensile behavior of slurry-infiltrated fiber-reinforced cementitious composites (SIFRCCs), which can accommodate a large number of steel fibers, was analyzed under static and dynamic loading to improve the shortcomings of RC and to enhance its explosion and impact resistance. The fiber volume fractions of SIFRCCs were set to 4%, 5%, and 6%, and three strain rate levels (maximum strain rate: 250 s-1) were applied. As a result, the tensile strength exceeded 15 MPa under static load, and the dynamic tensile strength reached a maximum of 40 MPa. In addition, tensile characteristics, such as tensile strength, deformation capacity, and energy absorption capacity, were improved as the fiber volume fraction and strain rate increased.

A Study of Structure-Fluid Interaction Technique for Submarine LOX Tank under Impact Load of Underwater Explosion (수중폭발 충격하중을 받는 잠수함 액화산소 탱크의 구조-유체 상호작용 기법에 관한 연구)

  • KIM JAE-HYUN;PARK MYUNG-KYU
    • Journal of Ocean Engineering and Technology
    • /
    • v.19 no.1 s.62
    • /
    • pp.20-25
    • /
    • 2005
  • The authors performed the underwater explosion analysis for the liquified oxygen tank - a kind of fuel tank of a mid-size submarine, and tried to verify the structural safety for this structure. First, the authors reviewed the theory and application of underwater explosion analysis, using a Structure-Fluid Interaction technique and its finite element modeling scheme. Next, the authors modeled the explosive and sea water as fluid elements, the LOX tank as structural elements, and the interface between the two regions as the ALE scheme. The effect on shock pressure and impulse of fluid mesh size and shape are also investigated. Upon analysis, it was found that the shock pressure due to explosion propagated into the water region, and hit the structure region. The plastic deformation and the equivalent stress were apparent at the web frame and the shock mount of LOX structure, but these values were acceptable for the design criteria.

The Study on the Optimal NDT Method for the Explosion Damage Analysis for One-way RC Slabs (일방향 철근 콘크리트 슬래브의 폭발 피해 분석을 위한 최적의 비파괴검사법에 관한 연구)

  • Lee, Seoung-Jae;Oh, Tae-Keun;Park, Jong-Yil;Kim, Hie Sik
    • Journal of the Korean Society of Safety
    • /
    • v.32 no.5
    • /
    • pp.62-68
    • /
    • 2017
  • It is necessary to analyze on the compressive strength among material properties of concrete for confirming damages of architectures due to large explosion. A non destructive test is known as the representative methods estimating compressive strength and ultrasonic pulse velocity, rebound hardness test are widely used because of their simplicity, convenience. But combined method supplementing two types is applied at now as they are affected by the characteristics of test specimen. In this research to check damages on the members of structure before and after explosion, the characteristics of compressive strength are compared and analyzed through a real explosion test prior to full scale structures. The test results showed that the larger the TNT powder and the shorter the distance, the greater the decrease in strength before and after the explosion and that the largest displacement and moment for the explosive load and the greatest decrease in the strength at the central part. Due to the surface condition and the thickness variation of the concrete specimens, the standard deviation value is the smallest in the combining method of fusion of the ultrasonic method and rebound hardness method. Thus, the combining method can be one of appropriate methods to evaluate the strength in the reinforced concrete structures damaged by the explosion.

Dynamic performance of girder bridges with explosion-proof and aseismic system

  • Wang, Jingyu;Yuan, Wancheng;Wu, Xun;Wei, Kai
    • Structural Engineering and Mechanics
    • /
    • v.61 no.3
    • /
    • pp.419-426
    • /
    • 2017
  • Recently, the transportation of dangerous explosive goods is increasing, which makes vehicle blasting accidents a potential threat for the safety of bridge structures. In addition, blasting accidents happen more easily when earthquake occurs. Excessive dynamic response of bridges under extreme loads may cause local member damage, serviceability issues, or even failure of the whole structure. In this paper, a new explosion-proof and aseismic system is proposed including cable support damping bearing and steel-fiber reinforced concrete based on the existing researches. Then, considering one 40m-span simply supported concrete T-bridge as the prototype, through scale model test and numerical simulation, the dynamic response of the bridge under three conditions including only earthquake, only blast load and the combination of the two extreme loads is obtained and the applicability of this explosion-proof and aseismic system is explored. Results of the study show that this explosion-proof and aseismic system has good adaptability to seism and blast load at different level. The reducing vibration isolation efficiency of cable support damping bearing is pretty high. Increasing cables does not affect the good shock-absorption performance of the original bearing. The new system is good at shock absorption and displacement limitation. It works well in reducing the vertical dynamic response of beam body, and could limit the relative displacement between main girder and capping beam in different orientation so as to solve the problem of beam falling. The study also shows that the enhancement of steel fibers in concrete could significantly improve the blast resistance of main beam. Results of this paper can be used in the process of antiknock design, and provide strong theoretical basis for comprehensive protection and support of girder bridges.

A Review on Practical Use of Simple Analysis Method based on SDOF Model for the Stiffened Plate Structures subjected to Blast Loads (폭발하중을 받는 보강판 구조물의 간이 해석법에 대한 실용성 검토)

  • Kim, Ul-Nyeon;Ha, Simsik
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.57 no.2
    • /
    • pp.70-79
    • /
    • 2020
  • The offshore installation units may be subjected to various accidental loads such as collision from supply vessels, impact from dropped objects, blast load from gas explosion and thermal load from fire. This paper deals with the design and strength evaluation method of the stiffened plate structures in response to a blast load caused by a gas explosion accident. It is a comprehensive review of various items used in actual project such as the size and type of the explosive loads, general design procedure/concept and analysis method. The structural analyses using simple analysis methods based on SDOF model and nonlinear finite element analysis are applied to the particular FPSO project. Also validation studies on the design guidance given by simple analysis method based on SDOF model have also considered several items such as backpressure effects, material behavior and duration time of the overpressure. A good correlation between the prediction made by simple analysis method based on SDOF model and nonlinear finite element analysis can be generally obtained up to the elastic limit.