• Title/Summary/Keyword: Explosion accidents

Search Result 300, Processing Time 0.026 seconds

Estimation of willingness to pay of workers who are engaged in nuclear power R&D projects to avoid exposure to radioactive matters by using a choice experiment (선택실험설문에 의한 방사능 피폭 가능성에 대한 원자력 기술개발 종사자의 지불용의액 추정)

  • Bae, Jeong Hwan
    • Environmental and Resource Economics Review
    • /
    • v.22 no.3
    • /
    • pp.411-435
    • /
    • 2013
  • Since catastrophe from explosion of Hukushima nuclear power plant, concerns over possibility of exposure to radioactive matter has been disseminating all over the world and frequent accidents of domestic nuclear power plants also has been amplifying throughout the nation. In the past, major focus was made on compensation for local residents who live nearby nuclear power plants, but focal point of this study is on wage premium of workers who are employed in R&D of nuclear power plants. It is difficult to derive socially desirable result if private sectors are responsible for compensation on workers who suffer from physical damages due to the exposure to radioactive matter. Because victims should verify the damages that occur in the working places. This study conducted a survey on which job would prefer the respondents who are engaged with the nuclear R&D projects as exposure levels to radioactive matter, security of job, location of firms, and work intensity differ. As a result, exposure to radioactive matter was the most important attribute in choosing alternative jobs followed by job security, work intensity and job location. Annual willingness to pay for reduction of exposure to radioactive matter was estimated as 7730~7770 thousand KRW depending on different econometric models. Therefore, Korean government should prepare institutional foundation in order that appropriate compensation should be made on workers who are engaged in R&D projects on nuclear power plants if they have damages from the exposure to radioactive matter.

Risk Assessment Technique for Gas Fuel Supply System of Combined Cycle Power Plants (I) : Based on API RBI Procedures (복합화력발전의 가스연료 공급계통에 대한 위험도 평가 기법 연구 (I) : API RBI 절차에 기반한 위험도 평가)

  • Song, Jung Soo;Yu, Jong Min;Han, Seung Youn;Choi, Jeong Woo;Yoon, Kee Bong
    • Journal of Energy Engineering
    • /
    • v.27 no.2
    • /
    • pp.1-13
    • /
    • 2018
  • The proportion of natural gas-fueled power generation is expanding due to the change of domestic energy policy pursuing reduction of dust and increasing clean energy consumption. Natural gas fuels used for the combined-cycle power plants and the district-heating power plants are operated at high temperature and high pressure in the fuel supply system. Accidents due to leakage of the gas such as fire and explosion should be prevented by applying risk management techniques. In this study, risk assessment was performed on the natural gas fuel supply system of a combined power plant based on the API RP 581 RBI code. For the application of the API RBI code, lines and segments of the evaluation target system were identified. Operational data and input information were analyzed for the calculations of probability of failure and consequence of failure. The results of the risk assessment were analyzed over time from the initial installation time. In the code-based evaluation, the gas fuel supply system was mainly affected by thinning, external damage, and mechanical fatigue damage mechanisms. As the operating time passes, the risk is expected to increase due to the external damage caused by the CUI(Corrosion Under Insulation).

A Study on the Improvement of Operation Performance of Wet Bell Diving System in the Salvage Ship (고장 사례 분석을 통한 수중함용 디젤엔진 건전성에 관한 연구)

  • Choi, Woo-Suk;Min, Tae-Kyu;Kim, Byeong-Ho;Chang, Ho-Seong
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.21 no.8
    • /
    • pp.98-106
    • /
    • 2020
  • This study examined the integrity of diesel engines for underwater vessels through failure analysis, analyzed the causes of abnormal diesel engine stoppage during building and examined the integrity of secondary damages. The diesel engine stoppage was analyzed by checking the temperature change of the piston before and after the abnormality and checking the damage. In addition, in order to analyze the secondary damage caused by the explosion, the tensile and compressive stresses transmitted to the crankshaft, the core part of the diesel engine, were calculated, and the stress distribution was examined through finite element analysis, but the crankshaft was designed by safety. It was confirmed that there was no damage to the crankcase even when the diesel engine was taken out of the ship and closely inspected. The integrity of the crank shaft was verified in advance for the occurrence of diesel engine emergency shutdown accidents through this research result. Therefore, the inspection and restoration were carried out to the minimum extent, and the quality of diesel engines was secured. This study is expected to be used as a reference for ensuring soundness in any future review of diesel engine quality problems.

A Study on Lightweight Design of Cantilever-type Helideck Using Topology Design Optimization (위상 최적설계를 활용한 캔틸레버식 헬리데크 경량화 연구)

  • Jung, Tae-Won;Kim, Byung-Mo;Ha, Seung-Hyun
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.30 no.5
    • /
    • pp.453-460
    • /
    • 2017
  • In the offshore industry, helicopters are mainly used for transportation of goods or operating personnel between offshore sites and onshore facilities. A helideck is a structure that is required for landing and take-off of helicopters on the offshore structure. There are several shapes of helidecks depending on the type of offshore structures or installation location. Among them, cantilever-type helidecks usually provide more space on the topside of offshore structures and it is safer against potential accidents like fire or explosion. In this paper, the cantilever-type helideck is selected for the research object and topology design optimization is applied for lightweight design of the helideck. A finite element model is then created from the optimal layout of truss structures of the helideck, and structural analysis is performed under various landing conditions and wind loads. Based on the analysis results, the detailed section dimensions of structural members are determined so that the maximum stress at each structure member does not exceed the allowable stress of the structural material. Also, the final optimal design shows significant decrease in the total weight of the helideck.

Experimental Evaluation of Bi-directionally Unbonded Prestressed Concrete Panel Blast Resistance Behavior under Blast Loading Scenario (폭발하중 시나리오에 따른 2방향 비부착 프리스트레스트 콘크리트 패널부재의 폭발저항성능에 대한 실험적 거동 평가)

  • Choi, Ji-Hun;Choi, Seung-Jai;Cho, Chul-Min;Kim, Tae-Kyun;Kim, Jang-Ho Jay
    • Journal of the Korea Concrete Institute
    • /
    • v.28 no.6
    • /
    • pp.673-683
    • /
    • 2016
  • In recent years, frequent terror or military attack by explosion, impact, fire accidents have occurred. Particularly, World Trade Center collapse and US Department of Defense Pentagon attack on Sept. 11 of 2001. Also, nuclear power plant incident on Mar. 11 of 2011. These attacks and incidents were raised public concerns and anxiety of potential terrorist attacks on major infrastructures and structures. Therefore, the extreme loading researches were performed of prestressed concrete (PSC) member, which widely used for nuclear containment vessel and gas tank. In this paper, to evaluate the blast resistance capacity and its protective performance of bi-directional unbonded prestressed concrete member, blast tests were carried out on $1,400{\times}1,000{\times}300mm$ for reinforced concrete (RC), prestressed concrete without rebar (PSC), prestressed concrete with rebar (PSRC) specimens. The applied blast load was generated by the detonation of 55 lbs ANFO explosive charge at 1.0 m standoff distance. The data acquisitions not only included blast waves of incident pressure, reflected pressure, and impulse, but also included displacement, acceleration, and strains at steel, concrete, PS tendon. The results can be used as basic research references for related research areas, which include protective design and blast simulation under blast loading.

A Quantitative Risk Analysis of LPG Leaked During Cylinder Delivery (가스용기 운반 중 누출된 LPG의 정량적 위험 분석)

  • Kim B-J,;Park Ki-Chang;Lee Kuen-Won
    • Journal of the Korean Institute of Gas
    • /
    • v.7 no.2 s.19
    • /
    • pp.33-41
    • /
    • 2003
  • There exists high hazard when transporting LPG as well as using, storing, and producing. For small scale LPG consumer, retailers deliver LPG to customers via a truck loading many LPG cylinders. Suppose there occurred a accident during LPG cylinder transfer, this could result in serious damages to the life and properties in the near or neighbor of the accident spot. In this regard, we made a quantitative risk analysis to estimate the possible damages and the probability through the identification of accidents causes and the simulation of the possible scenario. In this study, we made the Excel & Visual Basic computer program to perform quantitative LPG accident analysis. The simulation showed the following results. In case of UVCE(Unconfined Vapor Cloud Explosion), the effect within l0m of the accident spot showed very severe structural damages and even the accident can break the window glasses of the area of 150 m apart from accident spot. In case of TNT corresponding probit analysis, after 10 minutes LPG leaking, $75\%$ window glasses of 40 m distance was expected to be broken. And $16\%$ frames of 20m distance, $10\%$ frames of 40m distance was expected to be collapsed.

  • PDF

Minimum Film Boiling Temperatures for Spheres in Dilute Aqueous Polymer Solutions and Implications for the Suppression of Vapor Explosions (폴리머 수용액에서 구형체의 최소막비등온도와 증기폭발 억제 효과)

  • Bang, Kwang-Hyun;Jeun, Gyoo-Dong
    • Nuclear Engineering and Technology
    • /
    • v.27 no.4
    • /
    • pp.544-554
    • /
    • 1995
  • Pool boiling of dilute aqueous solutions of polyethylene oxide polymer has been experimentally investigated for the purpose of understanding the physical mechanisms of the suppression of vapor explosions in this polymer solution. Tn solid spheres of 22.2mm and 9.5mm-diameter ore heat-ed and quenched in the polymer solutions of various concentrations at 3$0^{\circ}C$. The results showed that minimum film boiling temperature($\Delta$ $T_{MFB}$) in this highly-subcooled liquid rapidly decreased from over $700^{\circ}C$ for pure water to about 15$0^{\circ}C$ as the polymer concentration was increased up to 300ppm for 22.2mm sphere, and it decreased to 35$0^{\circ}C$ for 9.5mm sphere. This large decrease of minimum film boiling temperature in this aqueous polymer solution may explain its ability to suppress spontaneous vapor explosions. Also, tests with applying a pressure wave showed that the vapor film behaved more stable against an external disturbance at higher polymer concentrations. These observations together with the experimental evidences of vapor explosion suppression in dilute polymer solutions suggest that the application of polymeric additives such as polyethylene oxide as low as 300ppm to reactor emergency coolant be considered to prevent or mitigate energetic fuel-coolant interactions during severe reactor accidents.s.

  • PDF

A Review on 3D Structure Formation, Analysis and Performance Prediction Technique for All-solid-state Electrode and Battery (3차원 전고체 전극 구조체 형성, 분석 및 성능 예측 기술 동향)

  • Park, Joonam;Jin, Dahee;Kim, Dohwan;Bae, Kyung Taek;Lee, Kang Taek;Lee, Yong Min
    • Journal of the Korean Electrochemical Society
    • /
    • v.22 no.4
    • /
    • pp.139-147
    • /
    • 2019
  • Lithium-ion battery (LiB) with high energy density and efficiency has been utilized for the electric vehicle (EV) and energy storage system (ESS) as well as portable devices. However, as explosion accidents have frequently happened till lately, all-solid-state lithium secondary battery (ALSB) began to get in a spotlight because it can secure a very high safety and energy density by substituting flammable organic liquid electrolyte to nonflammable inorganic solid electrolyte. In spite of ALSB's certain merits, it has shown much poorer performance of cells than one of LiB due to some challenges, which have been small or never dealt with in the LiB system. Hence, although plenty of studies made progress to solve them, an approach about design of all-solid-state electrode (ASSE) has been limited on account of difficulty of ALSB's experiments. That is why the virtual 3D structure of an all-solid-state electrode has to be built and used for the prediction of cell performance. In this study, we elucidate how to form the 3D ASSE structure and what to be needed for the simulation of characteristics on ALSB. Furthermore, the ultimate orientation of 3D modeling and simulation for the study of ALSB are briefly suggested.

CFD-based Fire Accident Impact Analysis in Clean Room for semiconductor PR Process (반도체 PR 공정의 클린룸내 CFD 기반 화재 사고 영향 분석)

  • Chun, Kwang-Su;Yi, Jinseok;Park, Myeongnam
    • Journal of the Korean Institute of Gas
    • /
    • v.25 no.6
    • /
    • pp.35-44
    • /
    • 2021
  • The PR (Photo Resist) process in the semiconductor process is a process that uses a mixture of flammable substances. Due to the process equipment is installed in a clean room and when flammable substances leak, there is a high risk of suffocation, fire, and explosion. It is necessary to analyze the impact of accidents that may occur during operation and to evaluate whether the safety of workers can be guaranteed. In this study, the value of radiant heat and temperature change at the monitor point set up virtual inside the clean room was confirmed through CFD simulation of 10 leak and fire scenarios using the FLACS CFD - Fire Module. A fire that occurs inside a clean room transfers high radiant heat to the inter-story structure, but its scope is quite limited, and it is unlikely that it will collapse in a single fire accident. There was no scenario in which two stairs leading to the exit were exposed to high radiant heat at the same time due to a fire accident, therefore workers were able to escape in case of a fire. In addition, it was confirmed that the level of radiant heat and temperature rise rapidly decreased as they moved downstairs. According to the API 520 standard, workers exposed to 6.31 kW/m2 of radiant heat that workers can withstand for 30 seconds were confirmed that it was possible to sufficiently escape from the inside.

Low price type inspection and monitoring system of lithium ion batteries for hybrid vessels (하이브리드 선박용 리튬 배터리의 저가형 감시시스템 구현)

  • Kwon, Hyuk-joo;Kim, Min-kwon;Lee, Sung-geun
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.40 no.1
    • /
    • pp.28-33
    • /
    • 2016
  • Batteries are used for main power engine in the fields such as mobiles, electric vehicles and unmanned submarines, for starter and lamp driver in general automotive, for emergency electric source in ship. These days, lead-acid and the lithium ion batteries are increasingly used in the fields of the secondary battery, and the lead-acid battery has a low price and safety comparatively, The lithium ion battery has a high energy density, excellent output characteristics and long life, whereas it has the risk of explosion by reacting with moisture in the air. But Recently, due to the development of waterproof, fireproof, dustproof technology, lithium batteries are widely used, particularly, because their usages are getting wider enough to be used as a power source for hybrid ship and electric propulsion ship, it is necessary to manage more strictly. Hybrid ship has power supply units connected to the packets to produce more than 500kWh large power source, and therefore, A number of the communication modules and wires need to implement the wire inspection and monitor system(WIIMS) that allows monitoring server to transmit detecting voltage, current and temperature data, which is required for the management of the batteries. This paper implements a low price type wireless inspection and monitoring system(WILIMS) of the lithium ion battery for hybrid vessels using BLE wireless communication modules and power line modem( PLM), which have the advantages of low price, no electric lines compared to serial communication inspection systems(SCIS). There are state of charge(SOC), state of health(SOH) in inspection parts of batteries, and proposed system will be able to prevent safety accidents because it allows us to predict life time and make a preventive maintenance by checking them at regular intervals.