• Title/Summary/Keyword: Explosion Effects

Search Result 189, Processing Time 0.025 seconds

Preliminary Structural Design of Blast Hardened Bulkhead (The 1st Report : Formulation of Simplified Structural Analysis/Design Method) (폭발강화격벽의 초기구조설계에 관한 연구 (제1보 : 간이 구조 해석/설계 기법 정식화))

  • Nho, In Sik;Park, Man-Jae;Cho, Yun Sik
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.55 no.5
    • /
    • pp.371-378
    • /
    • 2018
  • Internal detonation of a warhead inside a compartment of naval vessel can result in serious blast damages including plastic deformation and rupture of the structural members especially bulkhead due to the huge explosive impact pressure, fragments and high temperature flame. To secure watertight integrity and to prevent the domino-type flooding of neighbouring compartments caused by the rupture of bulkheads, it is necessary to develop the structural design technology of Blast Hardened Bulkheads(BHB) which can resist the blast impact pressure of threatening weapons to increase the survivability of naval vessels. This study dealt with the simplified structural response analysis of BHB under impact pressure of confined explosion and aimed to develop the efficient and rational design method of BHB and joint structures which can be applied at initial design stage. The present 1st report dealt with the phenomena of explosive detonation surveying the preceding experimental/theoretical research and the characteristics of time history of blast pressure including the peak value and duration time were examined. And to predict the large plastic deformation behaviors of BHB by the huge blast pressure reasonably, the plastic hinge method including the membrane effects was formulated. It was applied to the simplified structural design equations. The following report will deal with the application and adjustment process of the structural scantling equations to the actual BHB design and verification of validity of them.

A Study on Sound Synchronized Out-Focusing Techniques for 3D Animation (음원 데이터를 활용한 3D 애니메이션 카메라 아웃포커싱 표현 연구)

  • Lee, Junsang;Lee, Imgeun
    • Journal of the Korea Society of Computer and Information
    • /
    • v.19 no.2
    • /
    • pp.57-65
    • /
    • 2014
  • The role of sound in producing 3D animation clip is one of the important factor to maximize the immersive effects of the scene. Especially interaction between video and sound makes the scene expressions more apparent, which is diversely applied in video production. One of these interaction techniques, the out-focussing technique is frequently used in both real video and 3D animation field. But in 3D animation, out-focussing is not easily implemented as in music videos or explosion scenes in real video shots. This paper analyzes the sound data to synchronize the depth of field with it. The novel out-focussing technique is proposed, where the object's field of depth is controlled by beat rhythm in the sound data.

A Study on Accident Frequency by Installing Safety Devices in the LPG Heating and Drying Furnace (LPG 가열로 및 건조로의 안전장치 설치에 따른 사고빈도에 관한 연구)

  • Song, Dong-Woo;Kim, Ki-Sung;Kim, Choong-Hee;Lee, Seong-Gueong;Lee, Su-Kyung
    • Journal of the Korean Institute of Gas
    • /
    • v.19 no.4
    • /
    • pp.49-54
    • /
    • 2015
  • The purpose of this study is to assess the risk of depending on the presence or absence of safety device of domestic heating and drying furnaces, by derivation and analysis of accident frequency of safety devices through FTA (Fault Tree Analysis). Installation standards are lacking in Korean for the safety device of LPG heating and drying furnace, which have a risk of explosion due to structure to trap the leaked gas. Four different safety devices were selected on the basis of NFPA and national standards for combustors of other equipment. Effects of frequency reduction in accidents were analyzed before and after installing the safety devices respectively. As a result, a minimal leakage safety device was presented for preventing damages from gas leak of domestic LPG heating and drying furnace.

Development of SWIR 3D Lidar System with Low Optical Power Using 1 Channel Single Photon Detector (1채널 단일광자검출기를 이용한 낮은 광출력의 SWIR(Short Wave Infrared) 3D 라이다 시스템 개발)

  • Kwon, Oh-Soung;Lee, Seung-Pil;Shin, Seung-Min;Park, Min-Young;Ban, Chang-Woo
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.25 no.6_3
    • /
    • pp.1147-1154
    • /
    • 2022
  • Now that the development of autonomous driving is progressing, LiDAR has become an indispensable element. However, LiDAR is a device that uses lasers, and laser side effects may occur. One of them is the much-talked-about eye-safety, and developers have been satisfying this through laser characteristics and operation methods. But eye-safety is just one of the problems lasers pose. For example, irradiating a laser with a specific energy level or higher in a dusty environment can cause deterioration of the dust particles, leading to a sudden explosion. For this reason, the dust ignition proof regulations clearly state that "a source with a pulse period of less than 5 seconds is considered a continuous light source, and the average energy does not exceed 5 mJ/mm 2 or 35 mW" [2]. Energy of output optical power is limited by the law. In this way, the manufacturer cannot define the usage environment of the LiDAR, and the development of a LiDAR that can be used in such an environment can increase the ripple effect in terms of use in application fields using the LiDAR. In this paper, we develop a LiDAR with low optical power that can be used in environments where high power lasers can cause problems, evaluate its performance. Also, we discuss and present one of the directions for the development of LiDAR with laser power limited by dust ignition proof regulations.

A Study on the Ground Vibration Reduction Characteristics of Air-Deck Blasting Method Using Paraffin Waxed Paper Tube (파라핀 지관 구조체를 활용한 Air-Deck 발파공법의 지반진동 저감특성에 관한 연구)

  • Gyeong-Jo, Min;Young-Keun, Kim;Chan-Hwi, Shin;Sang-Ho, Cho
    • Explosives and Blasting
    • /
    • v.41 no.1
    • /
    • pp.32-45
    • /
    • 2023
  • Environmental regulations in Korea for blasting at industrial sites have conservative standards, which often result in reduced efficiency and cost-effectiveness due to the consideration of environmental regulations and public complaints. Therefore, there is a need for blasting methods that can reduce environmental damage while improving construction efficiency and cost-effectiveness. In this study, we analyzed the effects of the PA-Deck (Paraffin Air-Deck) blasting method, which is a kind of Air Decoupled Charge method in principle utilizing a paraffin-infused paper tube as an air gap, on reducing blasting hazards and improving blasting efficiency. The analysis also evaluated the effectiveness of newly applied equipment for collecting blasting vibration data, and derived the relationship between the explosion velocity and vibration velocity of explosives, and performed frequency analysis of the vertical component. The results of the blasting vibration velocity analysis showed that the Paraffin Waxed Paper Tube-based blasting method exhibited significantly lower vibration velocities compared to conventional blasting methods, and it was judged that more uniformly small-sized fragmented rocks were generated.

Residual capacity assessment of post-damaged RC columns exposed to high strain rate loading

  • Abedini, Masoud;Zhang, Chunwei
    • Steel and Composite Structures
    • /
    • v.45 no.3
    • /
    • pp.389-408
    • /
    • 2022
  • Residual capacity is defined as the load carrying capacity of an RC column after undergoing severe damage. Evaluation of residual capacity of RC columns is necessary to avoid damage initiation in RC structures. The central aspect of the current research is to propose an empirical formula to estimate the residual capacity of RC columns after undergoing severe damage. This formula facilitates decision making of whether a replacement or a repair of the damaged column is adequate for further use. Available literature mainly focused on the simulation of explosion loads by using simplified pressure time histories to develop residual capacity of RC columns and rarely simulated the actual explosive. Therefore, there is a gap in the literature concerning general relation between blast damage of columns with different explosive loading conditions for a reliable and quick evaluation of column behavior subjected to blast loading. In this paper, the Arbitrary Lagrangian Eulerian (ALE) technique is implemented to simulate high fidelity blast pressure propagations. LS-DYNA software is utilized to solve the finite element (FE) model. The FE model is validated against the practical blast tests, and outcomes are in good agreement with test results. Multivariate linear regression (MLR) method is utilized to derive an analytical formula. The analytical formula predicts the residual capacity of RC columns as functions of structural element parameters. Based on intensive numerical simulation data, it is found that column depth, longitudinal reinforcement ratio, concrete strength and column width have significant effects on the residual axial load carrying capacity of reinforced concrete column under blast loads. Increasing column depth and longitudinal reinforcement ratio that provides better confinement to concrete are very effective in the residual capacity of RC column subjected to blast loads. Data obtained with this study can broaden the knowledge of structural response to blast and improve FE models to simulate the blast performance of concrete structures.

Estimation and Adjustment of Time Point in Manifestation of Gas Safety Project Effects using Sigmoid Functions (시그모이드 함수를 이용한 가스안전사업 효과의 발현시점 추정과 조정)

  • Hyeon Kyo Lim;Geon Yeong Bak
    • Journal of the Korean Society of Safety
    • /
    • v.38 no.1
    • /
    • pp.70-77
    • /
    • 2023
  • Gas has replaced coal or petroleum as primary fuel because of its convenience. However, gas has risk of fire, explosion, or poisoning. To reduce gas-related accidents, many strategic projects have been being carried based on 'Gas Safety Management Basic Plans' on a domestic scale. In spite of those projects, the gas-related accident rate did not decrease over past decades. Thus, this study was conducted to analyze the effectiveness of ongoing projects, and to find out ways to make improvements. Conventional statistical analyses on accident data published by gas-related institutions were not useful to determine meaningful attributes to predict future. Whereas, accident case analyses adopted in the present study discovered differences in the type of people and their unsafe acts for each gas type. Meanwhile, the overall average priority of projects was not high in the aspect of System Safety Precedence. If the current trend is maintained, with sigmoid functions, it can be estimated that mean annual accident rate will decrease by only 2.0% in the next two decades. To improve the current trend, the present study made conclusions as followings: (1) safety projects should be designed with careful consideration of accident traits including gas type, unsafe acts, and persons involved and (2) alternative strategies should include system considerations such as minimum hazard design and safety devices prior to mere education or training. To summarize briefly, the present state related with gas accidents highlights the necessity of a system-based multidisciplinary approach.

Effects of formulation including pretreated wood as a component of a growing media for tall fescue(Festuca arundinacea)

  • Choi, Myung-Suk;Ha, Si Young;Jung, Ji Young;Kim, Ji Su;Nam, Jeong Bin;Yang, Jae-Kyung
    • Journal of agriculture & life science
    • /
    • v.50 no.1
    • /
    • pp.137-146
    • /
    • 2016
  • This experiment was designed to assess the physical and chemical properties of growing media substituted with a range of increasing concentrations of pretreated wood and to relate these properties to plant growth responses. For preparing the growing media, each material was combined with rural soil, peat, perlite and pretreated wood. Physicochemical properties studied were similar to ideal substrate ranges for plant growth on growing media, including pretreated wood. Physical properties were also well maintained over time. In comparison to plants growing in 100% rural soil, tall fescue(Festuca arundinacea) in the prepared growing media achieved better growth, especially when using the 50% rural soil + 50% PPW(peat + perlite + pretreated wood, 3:1:6(w/w/w)) and 30% rural soil + 70% PPW (peat + perlite + pretreated wood, 3:1:6(w/w/w)), and showed improved germination percentage. We confirmed the potential use of growing media, including pretreated wood. Furthermore, our results show a correlation among the physicochemical properties of tall fescue(Festuca arundinacea); physical properties were significantly influenced by germination and aerial parts. The root length of physicochemical properties was correlated with bulk density and organic compound (p<0.01).

Propagation Characteristics of Ground Vibration Caused by Blast Hole Explosion of High Explosives in Granite (고위력 폭약의 화강암 내 장약공 폭발에 의한 지반진동 전파특성에 관한 연구)

  • Gyeong-Gyu Kim;Chan-Hwi Shin;Han-Lim Kim;Ju-Suk Yang;Sang-Ho Bae;Kyung-Jae Yun;Sang-Ho Cho
    • Explosives and Blasting
    • /
    • v.41 no.4
    • /
    • pp.29-40
    • /
    • 2023
  • Rock blasting is utilized in various fields such as mining, tunneling, and the construction of underground structures. The role of rock blasting technology has became increasingly significant with the growing utilization of underground cavity. Blast hole pressure, generated during rock blasting, is a critical variable directly impacting factors such as crushing and blast vibration. It stands out as one of the most important parameters for assessing explosive performance and predicting blasting effects. While blast hole pressure has been studied by several researches, comparisons are challenging due to variations in experimental conditions such as explosive type, charge, and blasting conditions. In this study, blast hole pressure sensors and observation hole pressure sensors were developed to measure pressure during single-hole blasting, The experimental results were then used to discuss the propagation characteristics of pressure around the blast hole and the corresponding blast vibration.

Development of Methane Gas Leak Detector by Short Infrared Laser (단적외선 레이저를 이용한 메탄가스 누출 검지 장비 개발)

  • Young Sam Baek;Jung Wan Hong
    • Journal of the Korean Institute of Gas
    • /
    • v.28 no.1
    • /
    • pp.53-58
    • /
    • 2024
  • Due to the development of industry and improvement of living standards, the amount of natural gas used in the world is constantly increasing, and related industrial facilities such as power plants, storage facilities, and supply pipelines are constantly increasing. Natural gas is a convenient and clean fuel that does not pollute the environment, but in the event of an accident due to leakage, it can cause human casualties, large-scale property damage, and negative effects on the global warming effect. In addition to the severe penalties under the Severe Disaster Punishment Act, it is necessary to ensure safety. Therefore, by applying the principle of laser-based absorption spectroscopy, we developed a long-range portable methane leakage gas detection system that can detect the concentration of methane leaking from a distance of up to 30 meters and verified its effectiveness.