• Title/Summary/Keyword: Exploding Foil Initiator

Search Result 7, Processing Time 0.022 seconds

Study on Aging Characteristics of Exploding Foil Initiator (고전압 기폭관의 노화 특성 연구)

  • Kim, Dong-seong;Jang, Seung-gyo
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.48 no.8
    • /
    • pp.581-588
    • /
    • 2020
  • The aging characteristics of exploding foil initiator (EFI) are studied. In order to observe the aging characteristics, the main components of the exploding foil initiator were classified and the failure mechanism was defined. The aging characteristics were defined in terms of power and sensitivity, and the accelerated aging test plan was established based on the activation energy calculated by HFC (Heat Flow Calorimetry) and Arrhenius theory. The performance variation was observed using the sensitivity test (Neyer test) and power test (Dent test) for the aged samples. The aging characteristic was observed on the mean exploding point of the sensitivity test, but long-enough life span was predicted considering the related specification.

Design Reliability Estimation of Low Energy Exploding Foil Initiator (LEEFI형 착화장치의 설계 신뢰도 추정)

  • Lee, Minwoo;Back, Seungjun;Son, Youngkap;Jang, Seung-gyo
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.22 no.5
    • /
    • pp.40-48
    • /
    • 2018
  • This paper presents a simulation-based design reliability estimation method of a low-energy exploding foil initiator (LEEFI) using a meta-model and describes the design reliability estimation results. The flyer velocity of the LEEFI is critical to initiate the explosive. Evaluation of the flyer velocity from mechanistic models in open literature requires a long computation time due to the multi-physical phenomena that generate the velocity. Moreover, the higher levels of confidence required for an initiator with high reliability incur higher computation costs. Thus, a meta-model of the flyer velocity over time was constructed in order to increase the computational efficiency for a reliable estimation. For different distributions and sigma levels of the design variables, the design reliability estimation results using the meta-model are provided. Additionally, the computational efficiency and accuracy of the estimation method are analyzed.

Measurement-based LEEFI Modeling and Experimental Verification for Predicting Firing Waveform of an ESAD (ESAD의 기폭 파형 예측을 위한 측정기반 LEEFI 모델링 및 검증)

  • Kang, Hyungmin;Kim, Joungho;Hwang, Sukhyun;Jung, Myung-suk;Jo, Seyoung;Son, Joongtak
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.22 no.1
    • /
    • pp.20-26
    • /
    • 2019
  • In this paper, we propose measurement based numerical resistivity model for low energy exploding foil initiator (LEEFI) of electronic safety and arming device(ESAD). A resistivity model describes a behavior of variable resistance in LEEFI by firing current. The previous resistivity model was based on high energy detonator applications as explosive bridge wire and exploding foil initiator. Therefore, to estimate the voltage, current, and burst time of LEEFI, a resistivity model suitable for LEEFI is needed. For the modeling of resistivity of LEEFI, we propose a specific action based equation which represents a behavior of LEEFI when firing current is applied. To verify the proposed model, we analyze a firing current transmission path to obtain parasitic impedance. We experimentally verify that the proposed resistivity model offers precise estimation for the behavior of variable resistance in LEEFI.

An Experimental Study on Performance of a Miniaturized Exploding Foil Initiator using VISAR (VISAR를 활용한 초소형 EFI 기폭 장치의 성능 특성 연구)

  • Yu, Hyeonju;Jang, Seung-gyo;Kim, Kyu-Hyoung;Yoh, Jai-ick
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.21 no.5
    • /
    • pp.80-87
    • /
    • 2017
  • The performance of a pyrotechnic device that consists of donor/acceptor pair separated by a bulkhead relies on shock attenuation characteristics of the gap material and shock sensitivity of the donor and acceptor explosives. In this research, a micro Kapton flyer was accelerated by an exploding foil initiator (EFI) to figure out shock sensitivity of hexanitrostilbene (HNS) to impact. The averaged shock pressure and duration imparted to the explosive by flyer impact are measured by using a velocity interferometer for any reflector (VISAR) and impedance matching technique. Consequently, this research shows the possibility to determine the critical flyer velocity for initiating the miniaturized pyrotechnic unit by determining the relations between the impact velocity, the amplitude and width of impact loading.

A Study on Shock Attenuation according to the Flyer Characteristics of a Subminiaturized EFI detonator (초소형 EFI 착화기의 비행편 특성에 따른 충격파 감쇠 연구)

  • Yu, Hyeonju;Kim, Bohoon;Jang, Seung-gyo;Kim, Kyu-Hyoung;Yoh, Jack Jaick
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2017.05a
    • /
    • pp.426-432
    • /
    • 2017
  • An experimental and numerical study on shock attenuation in a solid by a subminiature flyer impact was conducted to determine the performance of a subminiature exploding foil initiator such as, flyer velocity and impulse loading. The obtained attenuation pattern shows the possibility to determine the critical flyer velocity for initiating the miniaturized pyrotechnic unit by figuring out shock intensity and duration according to flight characteristics.

  • PDF

Deformation of STS Cup for EFI Detonator in High Velocity Impact (탄두 충돌 시 기폭관 컵의 변형 해석)

  • Kim, Seok-Bong;Yoo, Yo-Han
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.16 no.4
    • /
    • pp.430-434
    • /
    • 2013
  • In this paper, we have investigated deformation of cup for EFI detonator in high velocity impact test. The experimental result shows that STS cup deformed 0.170 mm with the bulged shape. The numerical simulation result with static/dynamic material properties of SUS304 shows 0.166 mm of deformation. The main parameters to decrease the deformation of cup are stength, thickness and density of cup. The initial condition of SUS304 cup was strength of 215 MPa and thickness of 0.12 mm. As strength increases to 500 MPa, deformation of cup converges to 0 mm, and as thickness increases to 0.18 mm, deformation of cup converges to 0 mm. If the density of cup decreases from 8 to 2.7 g/cc, the deformation of cup decreases to 0.141 mm.

The Design and Test of the Electronic Arm Fire Device Circuit (전자식 점화안전장치 회로부 설계 및 검증)

  • Gim, Hakseong;Hwang, Jung-Min;Jang, Seung-gyo;Kim, Jae-Hoon;Hwang, Dae-Gyu
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.21 no.6
    • /
    • pp.857-864
    • /
    • 2018
  • This paper describes about the circuit design and test of the electronic Arm Fire Device. Electronic arm fire device consists of igniter, circuit and housing case and it operates without the actuator such as torque motor or solenoid. A high-voltage DC-DC converter was used to generate the voltage for initiating the LEEFI(Low Energy Exploding Foil Initiator). The MEMS switch was used to detect the acceleration that occurs when missile is launched, and the circuit was designed considering the size, performance, and specification of the electronic devices. The performance test was conducted to verify the designed circuit and we confirmed that it operates well.