Recent deregulation of Korean electricity industry has made each power generation company pay more attention to maximizing its own profit instead of minimizing the overall system operation cost while guaranteeing system security. Electricity power generation problem is typically defined as the problem of determining both the on and off status and the power generation level of each generator under the given fuel constraints, which has been known as Profit-Based Unit Commitment (PBUC) problem. To solve the PBUC problem, the previous research mostly focused on devising Lagrangian Relaxation (LR) based heuristic algorithms due to the complexity of the problem and the nonlinearity of constraints and objectives. However, these heuristic approaches have been reported as less practical in real world applications since the computational run time is usually quite high and it may take a while to implement the devised heuristic algorithms as software applications. Especially when considering long-term planning problem which spans at least one year, the complexity becomes higher. Therefore, this paper proposes an explicit column generation algorithm using power generation patterns and the proposed algorithm is successfully applied to a Korean power generation company. The proposed scheme has a robust structure so that it is expected to extend general PBUC problems.
Proceedings of the Korean Operations and Management Science Society Conference
/
2002.05a
/
pp.410-417
/
2002
We consider the constraint based explicit routing problem in MPLS based IP Network. In this problem, we are given a set of traffic demands and a network with different link capacities. The problem is to assign the demand commodities to the paths in the network while minimizing the maximum link load ratio. We formulate this problem as an integer programming problem and propose an efficient column generation technique. To strengthen the formulation, we consider some valid inequalities. We also incorporate the column generation technique with variable fixing scheme Computational results show that the algorithm gives high quality solutions in a short execution time.
Proceedings of the Korean Operations and Management Science Society Conference
/
2006.11a
/
pp.75-89
/
2006
한국전력산업의 탈규제화의 영향으로 각 개별 발전회사들은 자사의 이익을 최대화하기 위한발전계획 수립에 큰 관심을 가지게 되었다. 발전계획은 주어진 연료제약 하에 발전수익과 유지보수비용을 고려하여 시간대별 발전기의 기동, 정지 및 발전출력을 결정하는 문제로서Profit-Based Unit Commitment (PBUC) 문제로 알려져 있다. PBUC 문제는 문제 자체의 복잡성과 비선형 제약식의 특성으로 인하여 과거 연구는 대부분 비선형 제약식 처리를 위한 Lagrangian Relaxation (LR) 기반 휴리스틱 접근법에 초점이 맞추어져 왔다. 하지만, 실제현업 적용에 있어 계산시간이 많이 소요되고 알고리즘의 구현에 많은 기간이 소요되어 실용성은 낮은 것으로 보고되었다. 특히 연료도입 및 저장제약을 고려하기 위한 1년 단위 장기 발전계획 수립은 문제의 범위가 더욱 넓어짐으로 인하여 복잡성이 매우 크게 증가하고, 이에 따라 기존 접근법에 한계가 있어 왔다. 이에 본 연구에서는 국내가스발전소의 사례를 중심으로 발전패턴개념의 도입 및 다양한 발전패턴 생성을 통한 Explicit Column Generation 기반 최적화 접근법을 제안한다. 발전패턴은 Column Generation 접근법의 각 Column에 해당하는 각주별 발전기 기동정지계획을 의미한다. 즉, 미리 유효한 발전패턴의 Pool을 최대한 확보한 후 Explicit Column Generation Formulation을 통하여 주별 최적의 발전패턴을 찾아내는 알고리즘으로 구성이 된다. 본 알고리즘은 실제 가스발전소의 장기 발전계획 수립과정에 적용되어 효과적으로 운용되고 있으며 연간 수십억원의 추가적인 이익을 실현할 것으로 분석되었다. 본 알고리즘을 확장 적용할 경우 PBUC 문제 해결을 위한 새로운 해법으로도 그 효용성이 클 것으로 예상된다.자료이기 때문에 통계적 활용의 범위가 방대하다. 특히 개인, 가구, 사업체 등 사회 활동의 주체들이 어떻게 변화하는지를 추적할 수 있는 자료를 생산함으로써 다양한 인과적 통계분석을 할 수 있다. 행정자료를 활용한 인구센서스의 이러한 특징은 국가의 교육정책, 노동정책, 복지정책 등 다양한 정책을 정확한 자료를 근거로 수립할 수 있는 기반을 제공한다(Gaasemyr, 1999). 이와 더불어 행정자료 기반의 인구센서스는 비용이 적게 드는 장점이 있다. 예를 들어 덴마크나 핀란드에서는 조사로 자료를 생산하던 때의 1/20 정도 비용으로 행정자료로 인구센서스의 모든 자료를 생산하고 있다. 특히, 최근 모든 행정자료들이 정보통신기술에 의해 데이터베이스 형태로 바뀌고, 인터넷을 근간으로 한 컴퓨터네트워크가 발달함에 따라 각 부처별로 행정을 위해 축적한 자료를 정보통신기술로 연계${cdot}$통합하면 막대한 조사비용을 들이지 않더라도 인구센서스자료를 적은 비용으로 생산할 수 있는 근간이 마련되었다. 이렇듯 행정자료 기반의 인구센서스가 많은 장점을 가졌지만, 그렇다고 모든 국가가 당장 행정자료로 인구센서스를 대체할 수 있는 것은 아니다. 행정자료로 인구센서스통계를 생산하기 위해서는 각 행정부서별로 사용하는 행정자료들을 연계${cdot}$통합할 수 있도록 국가사회전반에 걸쳐 행정 체제가 갖추어져야 하기 때문이다. 특히 모든 국민 개개인에 관한 기본정보, 개인들이 거주하며 생활하는 단위인 개별 주거단위에 관한 정보가 행정부에 등록되어 있고, 잘 정비되어 있어야 하며, 정보의 형태 또한 서로 연계가 가능하도록 표준화되어있어야 한다. 이와 더불어, 현재 인구센서스에서 표본조사를 통해 부가적으로 생산하는 경제활동통계를 생산하기 위해서는 개인이 속한 사업체를 파악할 수 있도록 모든 사업체가 등록되어
In this study, we propose a signomial classification method with 0-regularization (0-)which seeks a sparse signomial function by solving a mixed-integer program to minimize the weighted sum of the 0-norm of the coefficient vector of the resulting function and the $L_1$-norm of loss caused by the function. $SC_0$ gives an explicit description of the resulting function with a small number of terms in the original input space, which can be used for prediction purposes as well as interpretation purposes. We present a practical implementation of $SC_0$ based on the mixed-integer programming and the column generation procedure previously proposed for the signomial classification method with $SL_1$-regularization. Computational study shows that $SC_0$ gives competitive performance compared to other widely used learning methods for classification.
In this study, we propose a novel remote health monitoring system to accurately predict Parkinson's disease severity using a signomial regression method. In order to characterize the Parkinson's disease severity, sixteen biomedical voice measurements associated with symptoms of the Parkinson's disease, are used to develop the telemonitoring model for early detection of the Parkinson's disease. The proposed approach could be utilized for not only prediction purposes, but also interpretation purposes in practice, providing an explicit description of the resulting function in the original input space. Compared to the accuracy performance with the existing methods, the proposed algorithm produces less error rate for predicting Parkinson's disease severity.
KSII Transactions on Internet and Information Systems (TIIS)
/
v.16
no.10
/
pp.3230-3255
/
2022
Causality mining in NLP is a significant area of interest, which benefits in many daily life applications, including decision making, business risk management, question answering, future event prediction, scenario generation, and information retrieval. Mining those causalities was a challenging and open problem for the prior non-statistical and statistical techniques using web sources that required hand-crafted linguistics patterns for feature engineering, which were subject to domain knowledge and required much human effort. Those studies overlooked implicit, ambiguous, and heterogeneous causality and focused on explicit causality mining. In contrast to statistical and non-statistical approaches, we present Bidirectional Encoder Representations from Transformers (BERT) integrated with Multi-level Feature Networks (MFN) for causality recognition, called BERT+MFN for causality recognition in noisy and informal web datasets without human-designed features. In our model, MFN consists of a three-column knowledge-oriented network (TC-KN), bi-LSTM, and Relation Network (RN) that mine causality information at the segment level. BERT captures semantic features at the word level. We perform experiments on Alternative Lexicalization (AltLexes) datasets. The experimental outcomes show that our model outperforms baseline causality and text mining techniques.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.