• 제목/요약/키워드: Experimental verification

Search Result 1,663, Processing Time 0.027 seconds

An Experimental Study on the Pond Sediment and Water Quality Purification using Oxygen Solubilization Device(OSD) System (산소용해수를 이용한 호소 저질 및 수질개선에 관한 실험적 연구)

  • Kim, Young-Taek;Bae, Yoon-Sun;Roh, Eun-Kyung;Park, Chul-Hwi;Lee, Yeon-Ku
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.20 no.1
    • /
    • pp.94-103
    • /
    • 2006
  • The pollution in closing water can be caused by not only artificial factor like sewage but also natural factor like elution from sediment. In this study we analyzed Sediment Oxygen Demand (SOD) for verification of sediment purification effect and sediment elution experiment as well as general items like COD, TN, TP, SS to complement and assess the effect of sediment and water quality. The experiment result showed that the release rate of OSD system were 4 times and 3 times as large as control for P and Fe respectively. SOD for operated OSD system and control were $12.18gO_2{\cdot}m^{-2}{\cdot}d^{-1}$ and $47.95gO_2{\cdot}m^{-2}{\cdot}d^{-1}$. From water qualities analyzed by COD, TN, TP, SS, chlorophyll-a, the removal efficiency increase of TN, TP, chlorophyll-a and COD were about 10~20%, 40~50% and 10% respectively. In conclusion, OSD can contribute to improvement of both the waterbody and the sediment environment effectively.

A structural health monitoring system based on multifractal detrended cross-correlation analysis

  • Lin, Tzu-Kang;Chien, Yi-Hsiu
    • Structural Engineering and Mechanics
    • /
    • v.63 no.6
    • /
    • pp.751-760
    • /
    • 2017
  • In recent years, multifractal-based analysis methods have been widely applied in engineering. Among these methods, multifractal detrended cross-correlation analysis (MFDXA), a branch of fractal analysis, has been successfully applied in the fields of finance and biomedicine. For its great potential in reflecting the subtle characteristic among signals, a structural health monitoring (SHM) system based on MFDXA is proposed. In this system, damage assessment is conducted by exploiting the concept of multifractal theory to quantify the complexity of the vibration signal measured from a structure. According to the proposed algorithm, the damage condition is first distinguished by multifractal detrended fluctuation analysis. Subsequently, the relationship between the q-order, q-order detrended covariance, and length of segment is further explored. The dissimilarity between damaged and undamaged cases is visualized on contour diagrams, and the damage location can thus be detected using signals measured from different floors. Moreover, a damage index is proposed to efficiently enhance the SHM process. A seven-story benchmark structure, located at the National Center for Research on Earthquake Engineering (NCREE), was employed for an experimental verification to demonstrate the performance of the proposed SHM algorithm. According to the results, the damage condition and orientation could be correctly identified using the MFDXA algorithm and the proposed damage index. Since only the ambient vibration signal is required along with a set of initial reference measurements, the proposed SHM system can provide a lower cost, efficient, and reliable monitoring process.

The Review and Study Trend of Moxibustion (구법(灸法)에 대한 문헌적(文獻的) 고찰(考察) 및 최근 연구(硏究) 동향(動向))

  • Woo, Hyun-su;Lee, Yun-ho;Kim, Chang-hwan
    • Journal of Acupuncture Research
    • /
    • v.19 no.4
    • /
    • pp.1-15
    • /
    • 2002
  • Objective : To observe the biological responses and therapeutic effects of moxibustion and review the trend of related study. Methods : We searched and investigated the journals supplied by Pubmed online site and Je-Han Oriental Medical Academy homepage with the key word "moxibustion". Results : 1. The biological responses of moxibustion reveal on skelectal, digestive, urinary systems, especially blood, angiological systems. 2. The therapeutic effect of moxibustion are analgesic action, controls of excitation or inhibitation of nerve system, improvement of blood circulation, nutrition in organs, increase of absorption of pathlogical product, controls of secreting glands, care of tuberculosis, increase of natural healing power etc. 3. Moxibustions effects on diarrhea, edema, diabetus mellitus, hyperlipiemia, tinnitus, osteoporosis, facial palsy, myopia, pimple etc. 4. Most of moxibustion studys related on immunofunctional actions and renal functional actions. 5. To elevated quality of studies, we needs well-designed epeerimental methods, efficient secure of experimental groups, appropriate statistical verification, accumulations of knowledges about data research. Conclusions : We find out moxibustion is remakble on clinincal therapeutic effects, from now on much more studies are needed to develop this therapy.

  • PDF

Extracting parameters of TMD and primary structure from the combined system responses

  • Wang, Jer-Fu;Lin, Chi-Chang
    • Smart Structures and Systems
    • /
    • v.16 no.5
    • /
    • pp.937-960
    • /
    • 2015
  • Tuned mass dampers (TMDs) have been a prevalent vibration control device for suppressing excessive vibration because of environmental loadings in contemporary tall buildings since the mid-1970s. A TMD must be tuned to the natural frequency of the primary structure to be effective. In practice, a TMD may be assembled in situ, simultaneously with the building construction. In such a situation, the respective dynamic properties of the TMD device and building cannot be identified to determine the tuning status of the TMD. For this purpose, a methodology was developed to obtain the parameters of the TMD and primary building on the basis of the eigenparameters of any two complex modes of the combined building-TMD system. The theory was derived in state-space to characterize the nonclassical damping feature of the system, and combined with a system identification technique to obtain the system eigenparameters using the acceleration measurements. The proposed procedure was first demonstrated using a numerical verification and then applied to real, experimental data of a large-scale building-TMD system. The results showed that the procedure is capable of identifying the respective parameters of the TMD and primary structure and is applicable in real implementations by using only the acceleration response measurements of the TMD and its located floor.

Gasdynamic Adjustment at Modeling of Flight Conditions Appropriate M=6

  • 우관제
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2000.04a
    • /
    • pp.8-8
    • /
    • 2000
  • In this paper are presented main power and gasdynamic characteristics of C-l6VK hypersonic test cell of Research Test Center of CIAM. Gasdynamic adjustment of the C-l6VK test cell was carried out with the working section constructed on scheme of Ramjet/scramjet test in free stream. Gasdynamic adjustment was conducted stage by stage in tile following sequence. First, check and preparation of all technical systems and checking measuring system. Than determination of the characteristics of test cell on cold (without the heating of air at entrance) regime and determination of the characteristics of test cell on regimes with the heating of air. Finally determination of tile characteristics of test cell with the loading of the working part by object. On tile final stage of gasdynamic adjustment two experiments with tile axisymmetric Scramjet model loaded into the working part of test cell were conducted. The first experiment was conducted with the purpose of determination of flow parameters with the object leaded into the working part and verification of experiment cyclogram. The second experiment was conducted with injection of hydrogen into the combustion chamber of object, that is tile conditions on test cell simulated Scramjet flight Mach number M = 6. Such methodology of gasdynamic adjustment allows to determine influence of experimental object on flow parameters in the working part at different conditions of experiment (with the burning in combustion chamber of object and without the homing), and also to compare flow characteristics in the object duct.

  • PDF

Experimental Verification on the Detectability of Surface Flaws at Fillet Weld Hills by Ultrasonic Method (초음파에 의한 필렛 용접힐부의 표면결함 검출능에 관한 실험적 검증)

  • 박익근;이철구
    • Journal of Welding and Joining
    • /
    • v.18 no.1
    • /
    • pp.46-51
    • /
    • 2000
  • Ultrasonic nondestructive evaluation (UNDE) technique is commonly used for detecting inner defects in the materials. Recently, new methods are trying to apply for detecting surface and subsurface flaws using Rayleigh wave or creeping wave. These techniques, however, have following problems. Echo amplitude is remarkably affected by the surface conditions and discrimination of echo pattern is usually difficult because shear wave propagate in the material at the same time. We can apply surface SH-wave(which is horizontally polarized shear wave traveling along near surface layer) technique to detect surface flaws. In this paper, directivity, distance amplitude characteristics and detectability of surface flaws at fillet weld hills of the 5 MHz and 2 MHz surface flaws at fillet weld hills of the 5 MHz and 2 MHz surface Sh-wave are experimentally investigated. As a result of the study, it was found out that these techniques are valuable for the detection of fatigue cracks at fillet weld heels which can not be detected by other ultrasonic techniques such as angle beam technique and which are inaccessible for non-destructive testings e.g. MT(magnetic particle testing) or PT(liquid penetrant testing).

  • PDF

Dilutant flow characteristics model of coarse particle suspensions with uniform size distribution

  • Ookawara, Shinichi;Ogawa, Kohei
    • Korea-Australia Rheology Journal
    • /
    • v.15 no.1
    • /
    • pp.35-41
    • /
    • 2003
  • It is expected that particle size distribution of any portion obtained through screening, is of more uniform than that of the original mixture, typically following such as log-normal, Rosin-Rammler distributions and so on. In this study, therefore, a new relation between parameters of the uniform distribution and flow characteristics of the coarse particle suspensions is derived based on the continuous polydisperse model (Ookawara and Ogawa, 2002b), which is derived from the discrete polydisperse model (Ookawara and Ogawa,2002a). The derived model equation predicts a linear increase of viscosity with shear rate, viz., dilutant flow characteristics. Further, the increase of viscosity is expected to be proportional to the square of volume fraction of particles, and to show the linear dependency on density and average diameter of particles. It is also shown that the uniform distribution model includes additional term that expresses the effect of distribution width. For verification of the model, the experimental results of Clarke (1967) are cited as well as in our previous work for the monodisperse model (Ookawara and Ogawa,2000) since most parameters were varied independently in his work. It is suggested that the newly introduced term expands the applicable range compared with the monodisperse model.

Experimental Verification and Circuit Modeling for Electromagnetic Interference(EMI) Estimation in PDP System (pdp 시스템의 EMI 예측을 위한 회로모델링 및 실험적 검정)

  • Gang, Jong-Gu;Eo, Yun-Seon;Sim, Jong-In;Jeong, Ju-Yeong
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.39 no.2
    • /
    • pp.39-45
    • /
    • 2002
  • A new EMI estimation technique concerned with a PDP system is presented. A physical circuit model is developed which can fairly well describe the AC-PDP system. EMIs of the PDP system are quantitatively determined by combining circuit model and Hertzian dipole antenna model. The simulation results are experimentally verified with the test panel. The AC PDP system was measured in the frequency range of 30MHz~300MHz in a semi-anechoic chamber, according to CISPR 13 code. Thereby, it is shown that the proposed technique can be usefully employed for EMI reduction.

Characteristics of erbium-doped fiber sources with double-pass forward configuration for gyroscope application (Double-pass forward 방식으로 구성된 자이로스코프용 Erbium 첨가 광섬유 광원의 특성)

  • 진영준;허영순;김택중;박희갑
    • Korean Journal of Optics and Photonics
    • /
    • v.14 no.4
    • /
    • pp.460-465
    • /
    • 2003
  • Characteristics of 0.98 $\mu$m-pumped erbium-doped fiber (EDF) sources with double-pass forward (DPF) configuration are analyzed by numerical calculation. Various source characteristics such as output power, spectral width and mean-wavelength stability are investigated with the variation of EDF length, pump power and pump wavelength. Some of the numerical results are compared with experimental ones for verification. The results show that the characteristics of sources with DPF configuration can change considerably with the EDF length. It is also found that an optimum design can exist for stable mean-wavelength against fluctuations of pump power and pump wavelength.

Minimization of Post-processing area for Stereolithography Parts by Selection of Part Orientation (부품방향의 선정을 통한 광조형물의 후가공면적 최소화)

  • Kim, Ho-Chan;Lee, Seok-Hee
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.26 no.11
    • /
    • pp.2409-2414
    • /
    • 2002
  • The surfaces of prototypes become rough due to the stair-stepping which is the inevitable phenomenon in the Rapid Prototypes are not used only for the verification of feature. The grinding, coating, or the composition of them is a main operation in post-processing in which lots of costs and long build time are needed. The solution is proposed to increase the efficiency of rapid prototyping by minimizing or removing the composition of them is a main operation in post-processing in which lots of costs and long build time are needed. the solution is proposed to increase the efficiency of rapid prototyping by minimizing or removing the regions for post-processing. the factors to cause the surface roughness and their effects are analyzed through the experiments. Software modules are developed to predict the surface roughness of each face in the prototyping with the result. An experimental compensation method is developed to apply the modules to various RP equipments, materials and build styles. The build direction is searched with use of genetic algorithm to maximize the total areas of the surface of which roughness is better than the user-defined value.