• Title/Summary/Keyword: Experimental verification

Search Result 1,663, Processing Time 0.025 seconds

Dynamic Experiment of a Full-Scale Five-story Steel Building with Viscoelastic Dampers (점탄성 감쇠기가 설치된 실물크기 5층 철골건물의 진동실험)

  • 민경원;이영철;이상현;박민규;김두훈;박진일;정정교
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 2002.09a
    • /
    • pp.239-246
    • /
    • 2002
  • Viscoelastic dampers are known effective devices for response reduction under earthquakes and winds. This study addresses how to design the optimum viscoelastic dampers installed at the full scale five-story steel building and novel approach to carry out the experimental work to verify the damper performance. First, an exciter of hybrid mass-type actuator is designed, which can move the building and its mathematical model is derived. The integrated system of building-actuator is experimentally analyzed for mathematical model. Second, convex model is applied for the prediction of required additional damping ratios to reduce responses below a specified target level. Chevron-type viscoelastic dampers are manufactured and installed at the first and second inter-stories, which are optimum places for response reduction. Sine-sweep and white noise excitations, which are generated by the hybrid mass-type actuator, are applied to the full scale building without and with dampers for performance verification. The transfer function of the building with four dampers, two of them installed at each first and second inter-story, are found to be lower than that of the building with two dampers installed at the first inter-story

  • PDF

Characteristic of a Spiral type Receiver for a Dish type solar thermal system using a Numerical model (수치모델을 이용한 고온 태양열 집열기의 열성능 분석)

  • Kim, Tae-Jun;Kim, Jae-Ik;Lee, Jin-Kyu;Lee, Ju-Han;Seo, Tae-Beom
    • Proceedings of the SAREK Conference
    • /
    • 2009.06a
    • /
    • pp.786-791
    • /
    • 2009
  • This study focus on verification of the thermal efficiency of volumetric air receiver with $5kW_{th}$ Dish-type solar thermal system for high temperature uses by using numerical analysis compare with experimental data including shape change of absorber, direction of inlet and outlet. Porous material for radiation-thermal conversion used in former researches are substituted with the stainless steel wall installed along the spiral shaped flow path. Temperature variation and the flow change at the inside of the absorber has been analyzed by Star-ccm+ Version 3.02. Using the numerical model, the heat transfer characteristics of spiral type receiver for dish-type solar thermal systems are known and the thermal performance of the receiver can be estimated.

  • PDF

Experimental Study of Cooling Energy Saving Verification Using Blinds and Phase Change Material(PCM) (창호 블라인드와 상변화물질 적용에 의한 냉방 에너지 사용량 절감효과에 대한 검토 연구)

  • Song, Young-Hak;Kim, Ki-Tae;Koo, Bo-Kyung;Lee, Keon-Ho
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.26 no.1
    • /
    • pp.26-31
    • /
    • 2014
  • This study looks into changing building energy use by application of phase change material (PCM). PCM does not need extra energy for operation and is used for reducing building energy use and, CO2 output by displaying semi-permanent effects after installation. It also is able to avoid the maximum electric power time-zone by inducing a time lag phenomenon of cooling and heating loads with high thermal capacity using latent heat. To verify the efficiency of blinds and PCM, tests about the PCM operation mechanism using air conditioning machinery and nocturnal panel cooling were done. In the test results of the case using PCM installation, a $45^{\circ}$ blind angle with machinery air conditioning and nocturnal panel cooling at the same time shows a 22 percent energy saving effect against general space. The test results of each case were compared and analyzed based on the blind and window opening settings. Finally, the energy reduction of existing buildings using PCM application was reviewed based on the final measurement results.

Face Recognition using Extended Center-Symmetric Pattern and 2D-PCA (Extended Center-Symmetric Pattern과 2D-PCA를 이용한 얼굴인식)

  • Lee, Hyeon Gu;Kim, Dong Ju
    • Journal of Korea Society of Digital Industry and Information Management
    • /
    • v.9 no.2
    • /
    • pp.111-119
    • /
    • 2013
  • Face recognition has recently become one of the most popular research areas in the fields of computer vision, machine learning, and pattern recognition because it spans numerous applications, such as access control, surveillance, security, credit-card verification, and criminal identification. In this paper, we propose a simple descriptor called an ECSP(Extended Center-Symmetric Pattern) for illumination-robust face recognition. The ECSP operator encodes the texture information of a local face region by emphasizing diagonal components of a previous CS-LBP(Center-Symmetric Local Binary Pattern). Here, the diagonal components are emphasized because facial textures along the diagonal direction contain much more information than those of other directions. The facial texture information of the ECSP operator is then used as the input image of an image covariance-based feature extraction algorithm such as 2D-PCA(Two-Dimensional Principal Component Analysis). Performance evaluation of the proposed approach was carried out using various binary pattern operators and recognition algorithms on the Yale B database. The experimental results demonstrated that the proposed approach achieved better recognition accuracy than other approaches, and we confirmed that the proposed approach is effective against illumination variation.

Verification of Two Least-Squares Methods for Estimating Center of Rotation Using Optical Marker Trajectory

  • Lee, Jung Keun
    • Journal of Sensor Science and Technology
    • /
    • v.26 no.6
    • /
    • pp.371-378
    • /
    • 2017
  • An accurate and robust estimation of center of rotation (CoR) using optical marker trajectory is crucial in human biomechanics. In this regard, the performances of the two prevailing least-squares methods, the Gamage and Lasenby (GL) method, and the Chang and Pollard (CP) method, are verified in this paper. While both methods are sphere-fitting approaches in closed form and require no tuning parameters, they have not been thoroughly verified by comparison of their estimation accuracies. Furthermore, while for both methods, results for stationary CoR locations are presented, cases for perturbed CoR locations have not been investigated for any of them. In this paper, the estimation performances of the GL method and CP method are investigated by varying the range of motion (RoM) and noise amount, for both stationary and perturbed CoR locations. The difference in the estimation performance according to the variation in the amount of noise and RoM was clearly shown for both methods. However, the CP method outperformed the GL method, as seen in results from both the simulated and the experimental data. Particularly, when the RoM is small, the GL method failed to estimate the appropriate CoR while the CP method reasonably maintained the accuracy. In addition, the CP method showed a considerably better predictability in CoR estimation for the perturbed CoR location data than the GL method. Accordingly, it may be concluded that the CP method is more suitable than the GL method for CoR estimation when RoM is limited and CoR location is perturbed.

System Identification of a Three-story Test Structure based on Finite Element Model (유한요소모델에 기초한 3층 건물모델의 시스템 식별)

  • 이상현;민경원;강경수
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.14 no.5
    • /
    • pp.416-423
    • /
    • 2004
  • In this paper, an experimental verification of system identification technique for constructing finite element model is conducted for a three-story test structure equipped with an active mass driver (AMD). Twenty Gaussian white noises were used as the input for AMD, and the corresponding accelerations of each floor are measured. Then, the complex frequency response function (FRF) for the input, the force induced by the AMD, was obtained and subsequently, the Markov parameters and system matrices were estimated. The magnitudes as well as phase of experimentally obtained FRFs match well with those of analytically obtained FRFs.

Development of an Automated Design System of a Large Pressure Vessel using the Steel, 34CrMo4 (강재(34CrMo4)를 사용한 대형 고압가스 용기의 설계 자동화 시스템 개발)

  • Kim, Ji-Hoon;Kim, Eui-Soo;Kim, Chul;Choi, Jae-Chan
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.20 no.8
    • /
    • pp.21-29
    • /
    • 2003
  • This paper describes a research work on the development of computer-aided design system for deep drawing & ironing of a high pressure vessel. An approach to the system is based on the knowledge-based rules. Knowledge for the system is formulated from plasticity theories, handbook, experimental results and empirical knowledge of field experts. An attempt is made to link programs incorporating a number of expert design rules with the process variables obtained by commercial FEM software, DEFORM and ANSYS, to form a useful package. It is composed of five main modules, which are calculation of product thickness, input, production feasibility check, process planning, and autofrettage process modules and two submodules, which are folding check and process variable verification submodules. Programs for the system have been written in AutoLISP on the AutoCAD 2000 using personal computer. The developed system makes it possible to design and manufacture large high pressure vessel requiring D.D.I. process more efficiently.

Evaluation of Optical Performance for an Aspheric Lens Connecting with FE Analysis of Injection Molding (사출성형 유한요소해석과 연계한 비구면렌즈의 광학적 특성평가)

  • Park, K.;Um, H.J.;Kim, J.P.;Joo, W.J.
    • Transactions of Materials Processing
    • /
    • v.16 no.1 s.91
    • /
    • pp.25-30
    • /
    • 2007
  • The present study covers an integrated simulation method to evaluate optical performance of an aspheric plastic lens by connecting a finite element (FE) analysis of injection molding with a ray tracing simulation. Traditional ray tracing methods have based on the assumption that the optical properties of a lens are homogeneous throughout the entire volume. This assumption is to a certain extent unrealistic for injection-molded plastic lenses because material properties vary at every point due to the injection molding effects. To take into account the effects of the inhomogeneous optical properties of the molded lens, a new.ay tracing scheme is proposed in conjunction with a FE analysis of the injection molding. A numerical scheme is developed to calculate ray paths on every element layer with more realistic information of the refractive indices which can be obtained through the FE analysis. This information is then used to calculate the ray paths based on the FE mesh of which nodal points have unique index values. The proposed tracing scheme is implemented on the tracing of an aspheric lens, and its validity is ascertained through experimental verification.

Ultimate Strength Testing of 3-D Steel Frame Subjected to Non-Proportional Loads (순차하중을 재하한 3차원 강뼈대 구조물의 극한강도 실험)

  • Kim, Seung Eock;Kang, Kyung Won
    • Journal of Korean Society of Steel Construction
    • /
    • v.14 no.1
    • /
    • pp.59-67
    • /
    • 2002
  • The ultimate strength testing of a two-story, single-bay, and sway allowed space steel frame was performed. Considering a majority of large-scale frame tests in the past, only two-dimensional frames were experimentally studied. Therefore, three-dimensional experiment is needed to extend the knowledge of this field. The steel frame subjected to non-proportional vertical and horizontal load was tested. The load-displacement curve of the test frame is provided. The experiment results are useful for verification of the three-dimensional numerical analysis. The results obtained from 3D non-linear analysis using ABAQUS were compared with experimental data.

A Study to Improve Bonding Strength of Strengthening Plate with Notches (노치를 이용한 보강재의 부착력 증가 방안에 관한 연구)

  • Han, Man-Yop;Song, Byeong-Pyo;Lee, Kwang-Myong
    • Magazine of the Korea Concrete Institute
    • /
    • v.11 no.1
    • /
    • pp.129-139
    • /
    • 1999
  • Recently, many strengthening methods are developed and used to rehabilitate existing structures. One of the old and popular methods is strengthening with bonding steel plate. However, steel plate bonding method has a defect, which is debonding failure of steel plate before yielding of the plate due to stress concentration at the of the bonded plate. The objective of this study is the experimental verification of the improved bonding properties of a strengthening plate with notches. Two normal beams and ten strengthened beams with steel plate, which have several different notches, are tested and showed their effectiveness. Test results show that the notches of strengthening plate significantly improve post-yielding behavior, compared to normally strengthened beams. It is proved that the notches of strengthening plate increases ultimate strength 14% more than normal strengthened beam after yield strength. As for the shape of notches, arc notch is the best. and triangle notch and trapezoidal notch are the next and end welding method has no effect.