• Title/Summary/Keyword: Experimental validation

검색결과 1,269건 처리시간 0.045초

Simulation and Model Validation of a Parabolic Trough Solar Collector for Water Heating

  • Euh, Seung-Hee;Kim, Dae Hyun
    • 한국태양에너지학회 논문집
    • /
    • 제33권3호
    • /
    • pp.17-26
    • /
    • 2013
  • The aim of this study is to analyze the performance of a parabolic trough solar collector (PTC) for water heating and to validate the model performance. The simulated model was compared, calibrated and verified with the experimental results. RMSE (Root mean square error) was used to calibrate the convective heat transfer coefficient between the absorber pipe and the ambient air which was the main factor affecting the heat transfer associated with the PTC. The calibrated model was better fitted with the experimental model. The maximum, minimum and mean deviation between the measured and predicted water temperatures differed only $0.81^{\circ}C$, $0.09^{\circ}C$ and $0.31^{\circ}C$ respectively in the calibrated model. RMSE values were decreased from 0.5389 to 0.4910, 0.0134 to 0.0125 and R-squared was increased from 0.9955 to 0.9956 after calibration. The temperature of water was increased from $33.7^{\circ}C$ to $48^{\circ}C$ in 12hour test. The thermal efficiency of the collector was calculated to be 55%. The calibrated model showed good agreement with the experimental data for model validation.

Multiclass LS-SVM ensemble for large data

  • Hwang, Hyungtae
    • Journal of the Korean Data and Information Science Society
    • /
    • 제26권6호
    • /
    • pp.1557-1563
    • /
    • 2015
  • Multiclass classification is typically performed using the voting scheme method based on combining binary classifications. In this paper we propose multiclass classification method for large data, which can be regarded as the revised one-vs-all method. The multiclass classification is performed by using the hat matrix of least squares support vector machine (LS-SVM) ensemble, which is obtained by aggregating individual LS-SVM trained on each subset of whole large data. The cross validation function is defined to select the optimal values of hyperparameters which affect the performance of multiclass LS-SVM proposed. We obtain the generalized cross validation function to reduce computational burden of cross validation function. Experimental results are then presented which indicate the performance of the proposed method.

HFFB technique and its validation studies

  • Xie, Jiming;Garber, Jason
    • Wind and Structures
    • /
    • 제18권4호
    • /
    • pp.375-389
    • /
    • 2014
  • The high-frequency force-balance (HFFB) technique and its subsequent improvements are reviewed in this paper, including a discussion about nonlinear mode shape corrections, multi-force balance measurements, and using HFFB model to identify aeroelastic parameters. To apply the HFFB technique in engineering practice, various validation studies have been conducted. This paper presents the results from an analytical validation study for a simple building with nonlinear mode shapes, three experimental validation studies for more complicated buildings, and a field measurement comparison for a super-tall building in Hong Kong. The results of these validations confirm that the improved HFFB technique is generally adequate for engineering applications. Some technical limitations of HFFB are also discussed in this paper, especially for higher-order mode response that could be considerable for super tall buildings.

EXPERIMENTAL VALIDATION OF THE POTENTIAL FIELD LANEKEEPING SYSTEM

  • Rossetter, E.J.;Switkes, J.P.;Gerdes, J.C.
    • International Journal of Automotive Technology
    • /
    • 제5권2호
    • /
    • pp.95-108
    • /
    • 2004
  • Lanekeeping assistance has the potential to save thousands of lives every year by preventing accidental road departure. This paper presents experimental validation of a potential field lanekeeping assistance system with quantitative performance guarantees. The lanekeeping system is implemented on a 1997 Corvette modified for steer-by-wire capability. With no mechanical connection between the hand wheel and road wheels the lanekeeping system can add steering inputs independently from the driver. Implementation of the lanekeeping system uses a novel combination of a multi-antenna Global Positioning System (GPS) and precision road maps. Preliminary experimental data shows that this control scheme performs extremely well for driver assistance and closely matches simulation results, verifying previous theoretical guarantees for safety. These results also motivate future work which will focus on interaction with the driver.

Numerical and experimental studies of a building with roller seismic isolation bearings

  • Ortiz, Nelson A.;Magluta, Carlos;Roitman, Ney
    • Structural Engineering and Mechanics
    • /
    • 제54권3호
    • /
    • pp.475-489
    • /
    • 2015
  • This study presents the validation of a numerical model developed for dynamic analysis of buildings with roller seismic isolation bearings. Experimental methods allowed validation of the motion equations of a physical model of a building with and without roller bearings under base excitation. The results are presented in terms of modal parameters, frequency response functions (FRFs) and acceleration response. The agreement between numerical and experimental results proves the accuracy of the developed numerical model. Finally, the performance of the constructed seismic protection system is assessed through a parametric study.

Experimental validation of a dynamic analysis and fuzzy logic controller of greenhouse air temperature

  • Hamad, Imen Haj;Chouchaine, Amine;Bouzaouache, Hajer
    • International Journal of Computer Science & Network Security
    • /
    • 제21권5호
    • /
    • pp.175-182
    • /
    • 2021
  • The greenhouse is a complex system. It is subject to multiple input disturbances that are highly dependent on meteorological conditions, which are generally nonlinear and have a great influence on the agricultural production. The objective of this paper is to study the fuzzy logic technique as one of the most efficient technologies to control the greenhouse. The fuzzy logic controller (FLC) was developed to activate the actuator based on a ventilator was installed in an experimental greenhouse to obtain a desired temperature of the microclimate despite the externals disturbances.

오목한 반구면의 Jet Impingement/Effusion Hole 주변 유동 특성에 대한 실험과 시뮬레이션의 비교 (Comparison of Experimental and Simulation Results for Flow Characteristics around Jet Impingement/Effusion Hole in Concave Hemispherical Surface)

  • 윤성지;서희림;염은섭
    • 한국가시화정보학회지
    • /
    • 제20권2호
    • /
    • pp.28-37
    • /
    • 2022
  • Flow characteristics of jet impingement over concave hemispherical surface with effusion cooling holes is relatively more complex than that of a flat surface, so the experimental validation for computational fluid dynamics (CFD) results is important. In this study, experimental results were compared with simulation results obtained by assuming different turbulence models. The vortex was observed in the region between the central jets where the recirculation structure appeared. The different patterns of vorticity distributions were observed for each turbulence models due to different interaction of the injected jet flow. Among them, the transition k-kl-ω model predicted similarly not only the jet potential core region with higher velocity, but also the recirculation region between the central jets. From the validation, it may be helpful to accurately predict heat and mass transfer in jet impingement/effusion hole system.

Different Real Time PCR Approaches for the Fine Quantification of SNP's Alleles in DNA Pools: Assays Development, Characterization and Pre-validation

  • Mattarucchi, Elia;Marsoni, Milena;Binelli, Giorgio;Passi, Alberto;Lo Curto, Francesco;Pasquali, Francesco;Porta, Giovanni
    • BMB Reports
    • /
    • 제38권5호
    • /
    • pp.555-562
    • /
    • 2005
  • Single nucleotide polymorphisms (SNPs) are becoming the most common type of markers used in genetic analysis. In the present report a SNP has been chosen to test the applicability of Real Time PCR to discriminate and quantify SNPs alleles on DNA pools. Amplification Refractory Mutation System (ARMS) and Mismatch Amplification Mutation Assay (MAMA) has been applied. Each assay has been pre-validated testing specificity and performances (linearity, PCR efficiency, interference limit, limit of detection, limit of quantification, precision and accuracy). Both the approaches achieve a precise and accurate estimation of the allele frequencies on pooled DNA samples in the range from 5% to 95% and don't require standard curves or calibrators. The lowest measurement that could be significantly distinguished from the background noise has been determined around the 1% for both the approaches, allowing to extend the range of quantifications from 1% to 99%. Furthermore applicability of Real Time PCR assays for general diagnostic purposes is discussed.

직접메탄올 연료전지의 농도 및 온도변화에 따른 실험적 검증 (Experimental Validation of a Direct Methanol Fuel Cells(DMFCs) model with a Operating Temperatures and Methanol Feed Concentrations)

  • 강경문;고요한;이기용;주현철
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2010년도 춘계학술대회 초록집
    • /
    • pp.125.2-125.2
    • /
    • 2010
  • In this paper, both theoretical and experimental investigations have been performed to examine the effects of key operating parameters on the cell performance of a DMFCs (i.e., methanol feed concentration and operating temperature). For experiment, the membrane electrode assemblies (MEAs) were prepared using a conventional MEA fabrication method based on a catalyst coated electrode (CCE) and tested under various cell temperatures and methanol feed concentrations. The polarization curve measurements were conducted using in-house-made $25cm^2$ MEAs. The voltage-current density data were collected under three different cell temperatures ($50^{\circ}C$, $60^{\circ}C$, and $70^{\circ}C$) and four different methanol feed concentrations (1 M, 2 M, 3 M, and 4 M). The experimental data indicate that the measured I-V curves are significantly altered, depending on these conditions. On the other hand, previously developed one-dimensional, two-phase DMFC model is simulated under the same operating conditions used in the experiments. The model predictions compare well with the experimental data over a wide range of these operating conditions, which demonstrates the validity and accuracy of the present DMFC model. Furthermore, both simulation and experimental results exhibit the strong influences of methanol and water crossover rates through the membrane on DMFC performance and I-V curve characteristics.

  • PDF